Exo sur les équations du second degré! [Nivo 1ère...]
-
Mmissliyah dernière édition par
Jdoi fer un exo sur les équations du second degré mais je n'ai pas compri la méthode!:s
David et Julienont 4ans d'écart.DAvid est l'ainé.En 2002, le produit de leurs ages est 396. on se propose de retrouver leurs années de naissance.
a)On note x l'age de David et y l'age de Julien en 2001.
Ecrire deux équations qui traduisent les données du texte.b)Démontrer que y est une solution de l'équation:
y²+ 4y - 396= 0c)Achever alors la resolution du problème.
merci d'avance!
@+
-
RRimbe dernière édition par
traduisons en terme d'équation l'énoncé:
Ils ont 4 ans d'écart et david est l'ainé:
x-y=4le produit de leurs ages fait 396 dc
xy=396Voilà t 2 équations.
De la 1ère on tire que x=4+y et si l'on remplace x dans la seconde par ce que l'on vient de trouver on a :
(4+y)*y=396 => y²+4y-396=0Pour résoudre celà tu appliques t formules:
-Calcul de delta:
Delta=b²-4ac=4²-4*-396=16+1584=1600delta>0 dc 2 sols:
y1=(b²+racine(delta))/(2a)
y2=(b²-racine(delta))/(2a)dc
y1=(4²+sqrtsqrtsqrt1600))/(21)=(16+40)/2=28
y2=(4²-sqrtsqrtsqrt1600))/(21)=-12 =>impossibledonc y=28 et dc x=28+4=32
voilà...