étude de fonction pour mon bac blanc !



  • Bonjour, j'ai mon premier bac blanc à la rentrée... Je fais donc chaques exercices type bac... afin de m'entrainer... mais j'ai beaucoup de difficulté pour celui ci aidez moi SVP... 🙂
    Merci d'avance.

    ¤ Une fonction f est définie sur ]-1; 1/2 [ par f(x)=ln(ax²+bx+C avec a, b & c réels. On suppose que son tableau de variation est le suivant...

    =====> ci dessous

    1° En utilisant les donées du tableau, déterminez a, b et c.

    2° Calculer f'(x) et résolver l'équation f'(x)=0

    3° Vérifier que le sens de variation de la fonction f obtenue est bien celui indiqué dans le tableau. donner la valeur exacte du maximun de f.

    MERCI d'AVANCE 🙂



  • Salut,

    pour déterminer a, b, c, il te faut 3 relations concernant f. Le tableau te les donne bien : f(-1/2) = 0, f(0) = 0, f(1/4) = ln (5/8). Tu obtiens alors un système de 3 équations à 3 inconnues.

    Pour le reste aucune difficulté...



  • Je ne suis pas du tout sur de mon équation 1/4a-1/2b+c=5/8 es ce bon ?

    merci



  • thesteph95
    Je ne suis pas du tout sur de mon équation 1/4a-1/2b+c=5/8 es ce bon ?

    merci

    Qu'est-ce donc que cette équation ?? Pourrais-tu nous expliquer comment tu l'as obtenue ? En tout cas elle n'est obtenue : ni de f(-1/2), ni de f(0), ni de f(1/4) !!!

    De plus je rappelle qu'il est formellement INTERDIT de poster plusieurs fois le même sujet. Ce n'est pas ça qui va te faire avoir une réponse plus rapidement !! Patiente un peu, on n'est pas là 24h/24 !!
    C'est pourquoi ton nouveau post à été supprimé...



  • okay, je suis désolée, finalement j'ai trouvée ceci es ce bon ?

    La fonction ln x étant définie , continue, monotone, croissante sur Df = R*+, pour x et a de Df : ln x = ln a <=> x = a

    f(-1/2) = ln 1 --> (a/4) - (b/2) + c = 1
    f(0) = ln 1 --> c = 1
    f(1/4) = ln(5/8) --> (a/16) + (b/4) + c = 5/8

    --> f(x) = -2 x² - x + 1

    merci !



  • thesteph95
    okay, je suis désolée, finalement j'ai trouvée ceci es ce bon ?

    La fonction ln x étant définie , continue, monotone, croissante sur Df = R*+, pour x et a de Df : ln x = ln a equiv/ x = a

    f(-1/2) = ln 1 --> (a/4) - (b/2) + c = 1
    f(0) = ln 1 --> c = 1
    f(1/4) = ln(5/8) --> (a/16) + (b/4) + c = 5/8

    Ca c'est bon !!

    thesteph95

    --> f(x) = -2 x² - x + 1

    euh...et le "ln" il est où ?? 😉
    Avec le "ln" c'est CORRECT !! a=-2 , b=-1, c=1 CORRECT !!

    @+



  • merci beaucoup... j'ai pas mal galérée mais enfin trouvé !
    alala... merci beaucoup pour toute votre aide c'est très sympathique !
    bonnes fêtes a tous. 😁



  • Pouvez vous me dire si j'ai bon pour la suite également... merci d'avance :

    2° Calculer f'(x) et résolver l'équation f'(x)=0
    f(x)= ln(-2 x² - x + 1 )
    f'(x)= -4x-1 /(-2 x² - x + 1 )

    ES CE BON ? MAIS POUVEZ VOUS M'INDIQUER CE QUE JE DOIS FAIRE POUR LE 3 ? MERCI d'AVANCE...

    3° Vérifier que le sens de variation de la fonction f obtenue est bien celui indiqué dans le tableau. donner la valeur exacte du maximun de f.



  • simplement, fais l'étude des variations de la fonction que tu as obtenue, dresse son tableau de variation pour le confronter à celui qui est donné dans l'énoncé. il s'agit en définitive de vérifier si la fonction trouvée convient. le maximum est f(0).



  • merci bien ! bonnes fêtes de fin d'année



  • bonjour j(ai un peu près le même exercice que toi je dois trouver des réels a b c d à partir d'un tableau de variation
    j'ai essayé de faire ton exercice j'ai compris comment tu as trouvé c mais pas a et b
    pour c tu as fais
    f(x)=ln (ax²+bx+c)
    f0)=ln (a0²+b0+c)=0
    c=0
    c=1
    dans mon exercice c=2 et d=0 mais je n'arrive pas à trouver a etb
    peus-tu m'aider merçi


Se connecter pour répondre
 

Il semble que votre connexion ait été perdue, veuillez patienter pendant que nous vous re-connectons.