Scinder: Fonction
-
Ggosanku dernière édition par
Je ne vais pas créer un autre sujet car c'est encore une fonction mais cette fois ci une fonction inverse
Est-ce que vous pouvez m'aider svp et me dire si j'ai bonOn considère la fonction f définie sur I= ]0, 10] par f(x)= (x+2)/x
- Vérifier que, pour tout x de I, f(x)= 1 + 2/x
- a. Rappeler les variations de la fonction inverse
b. En déduire les variations de la fonction u définie sur I par u(x)=2/x - Déterminer les variations de f sur I
- Sans calculer les valeurs, comparer f(2) et f(2.5), puis f(4) et f(4.5)
donc moi ce que j'ai mis pour certaines questions
- f(x)= (x+2)/x
f(x)= x/x + 2/x
f(x)= 1 + 2/x - a) la fonction inverse est décroissante sur ]0, + infinie [
b) la fonction u est décroissante sur ]0, 10 [
ensuite je ne vois pas
-
Eeinstein3 dernière édition par
gosanku
Je ne vais pas créer un autre sujet car c'est encore une fonction mais cette fois ci une fonction inverse
Est-ce que vous pouvez m'aider svp et me dire si j'ai bonOn considère la fonction f définie sur I= ]0, 10] par f(x)= (x+2)/x
- Vérifier que, pour tout x de I, f(x)= 1 + 2/x
- a. Rappeler les variations de la fonction inverse
b. En déduire les variations de la fonction u définie sur I par u(x)=2/x - Déterminer les variations de f sur I
- Sans calculer les valeurs, comparer f(2) et f(2.5), puis f(4) et f(4.5)
donc moi ce que j'ai mis pour certaines questions
- f(x)= (x+2)/x
f(x)= x/x + 2/x
f(x)= 1 + 2/x - a) la fonction inverse est décroissante sur ]0, + infinie [
b) la fonction u est décroissante sur ]0, 10 [
ensuite je ne vois pas
eh bien etan donnee ke ta fonction est decroissante surI et ke 2.5>2 c logike ke f(2.5)<f(2) pareil pour lautre!!
sinon tou le reste me parer bon!!
-
Ggosanku dernière édition par
einstein3
eh bien etan donnee ke ta fonction est decroissante surI et ke 2.5>2 c logike ke f(2.5)<f(2) pareil pour lautre!!sinon tou le reste me parer bon!!
ok merci beaucoup^^