encore des problème de dérivé avec les logaritme.
-
Llillie dernière édition par
Mon exercice:f(x) defini sur ]0,15] par:
f(x)=3+2lnx-(lnx)²-->Je dois tout dabord trouver sa limite lorsque x tend vers 0.
-->Je dois aussi calculer f'(x).
Pour le reste j'espère pouvoir me débrouiller.
Merci d'avance.(cet exercice est le n°101 page 97 du livre déclic maths teminale ES)
-
Bonjour,
Pour calculer la limite et "lever l'indétermination" un grand classique : mettre le terme de plus haut degré en facteur
f(x)=3+2lnx−(lnx)2f(x)=3+2lnx-(lnx)^2f(x)=3+2lnx−(lnx)2 = 3 + (lnx)2(lnx)^2(lnx)2(2/lnx - 1)
Avec cette forme tu devrais t'en sortir.
Pour la dérivée du relis ton cours pour connaître
la dérivée de la fonction ln
et la dérivée de unu^nunA toi de continuer et repose des questions si tu n'y arrives pas.
-
Llillie dernière édition par
merci beaucoup!