Devoir maison Aidez-moi
-
Iitalia34 dernière édition par
EX1
Développer :
1)a) A=(4+2 sqrtsqrtsqrt3)^2 B=(4-2sqrtsqrtsqrt3)^2 C=(4+2sqrtsqrtsqrt3)(4-2sqrtsqrtsqrt3)- a) Résoudre x-sqrtsqrtsqrt11=7sqrtsqrtsqrt11
b) Résoudre 7sur3 x=sqrtsqrtsqrt5
c) Factoriser: x^2 – 3. Résoudre ensuite l'équation : x^2 – 3 = 0
EX2
- En utilisant une identité remarquable, montrer que
(x + 1 + ) (x + 1 – ) = x^2 + 2x – 1 - Résoudre l'équation suivante : x^2 + 2x – 1 = 0
EX3
On considere un cylindre de hauteur h cm, dont le rayon de base est 3 cm.
On cherche h pour que ce cylindre ait le même volume qu'une sphère de
rayon 3 cm.- Exprimer à l'aide de ƒÎ et de h le volume du cylindre.
- Exprimer à l'aide de ƒÎ le volume de la sphere.
- Résoudre le probleme posé.
EX4
Une boule de pétanque en plastique de 74 mm de diamètre a laissé une
trace dans le sable de 24 mm de diamètre.
À quelle profondeur s'était-elle enfoncée ?
Tu feras un schéma de la situation.merci d avance
- a) Résoudre x-sqrtsqrtsqrt11=7sqrtsqrtsqrt11
-
Salut
EX 2
- En utilisant une identité remarquable, montre que
(x + 1 + ) (x + 1 – ) = x² + 2x – 1 - Résous l'équation suivante : x² + 2x – 1 = 0
Je présume qu'en développant (x + 1 + ...) (x + 1 – ...), tu trouves
((x + 1) + ...) ((x + 1) – ...) = (x+1)² - ...² =
x² + 2x + 1 - ...²
et ceci doit être égal à
x² + 2x – 1.
Tout le pb est donc de trouver quoi mettre dans ...²
compare le rouge et le bleu et conclus.Pour la question 2, il te faut utiliser la factorisation trouvée à la question 1.
Je dois partir ; je n'ai pas le temps de t'aider davantage.
@+
- En utilisant une identité remarquable, montre que
-
Va ! je te donne ... = sqrtsqrtsqrt2,
car x² + 2x + 1 - sqrtsqrtsqrt2 ² = x² + 2x + 1 - 2 = x² + 2x - 1.
donc (x + 1 + sqrtsqrtsqrt2) (x + 1 – sqrtsqrtsqrt2) = x² + 2x – 1.
-
Voici le schéma pour l'exercice 4 :
je te laisse trouver le théorème à employer (accompagné de justifications) ainsi que la longueur attendue.
-
Iitalia34 dernière édition par
merci beaucoup pour ton aide sans toi je ne sais pas ce que j'aurais fait