Qcm : Géométrie dans l'espace



  • Salut à tous !!

    Après quelques semaines sans me voir, je reviens (oh non !!)

    Voila je dois faire un qcm :

    Pour chaque question, aucune, une ou plusieurs réponses propositions peuvent être exactes. Indiquez laquelle en justifiant votre réponse. Cela veut donc dire que je dois justifier toutes les réponses.

    1- Si A(2;1;-3) et B(-1;3;-2) le vecteur AB a pour coordonnées :
    a] (1;-2;-1)
    b] (-3;2;1)
    c] (3;-2;-1)

    2- Si A (1;5;2) et B(3;1;-2), le milieu de [AB] a pour coordonnées:
    a] (8/4 ; 12/4 ; 0)
    b] (1;-2;-2)
    c] (2;3;0)

    3- Si M(-2;1;3) et N(1;3;-1), la distance MN est :
    a] (3;2;-4)
    b] supérieure à 5
    c] √29

    4- Les vecteurs u(-1;2;1) et v(1;-2;5) sont :
    a] opposés
    b] orthogonaux
    c] colinéaires

    5- Dans l'espace, y= 3x -1 est une équation :
    a] d'une droite
    b] d'un plan parallèle à l'axe des cotes
    c] d'un plan perpendiculaire au plan (xOy)

    6- Le plan d'équation 2x - 3z=1 contient le point :
    a] A(-1;2;-1)
    b] B(5;3;1)
    c] C(5;1;3)

    7- On considère la surface S d'équation : z = x³ - y +3
    Pour z=2, la courbe de niveau correspondante de S contient le point :
    a] A(1;2;4)
    b] B(1;2;2)
    c] C(2;1;2)

    8- Les plans d'équations z= 2y - 1 et 2z - 4y + 3 = 0 sont :
    a] strictement parallèles
    b] confondus
    c] sécants

    9-le système de deux équations :
    { y=2
    { z=-3
    définit :

    a] un point
    b] une droite parallèle à l'axe des abscisses
    c] une droite parallèle à l'axe des ordonnées

    Voila et merci à tous pour votre aide.



  • coucou
    et bien dans tout cela tu dois avoir fait quelque chose ?! nan ?! regarde dans ton cours pour calculer les coordonnées d'un vecteur ...



  • Alors voilà mes réponses :

    1- vecteur AB
    xb-xa = -1 -2 = -3
    yb-ya = 3 - 1 = 2
    zb-za = 2+3 = 5
    Vecteur Ab (-3;2;5), donc réponse b

    2- Pour éviter d'avoir à taper un truc qui ne ressemble à rien, je trouve les réponses a et c.

    3- Je trouve √29 = ~5,38
    Donc b et c.
    a, impossible, car on demande une distance et non des coordonnées.

    4-xx'+yy'+zz'=0
    (-1)(1)+(2)(-2)+(1)(5) = -1 - 4 + 5 =0
    Les vecteurs sont orthogonaux, donc rep b.

    u=kv
    -1 = (-1)1
    2= (-1) (-2)
    1 = (-1)(5) impossible
    Donc u ≠ kv, donc vecteurs u et v ne sont pas colinéaires.

    Je ne vois pas comment justifier le fait qu'ils soient ou non opposés.

    5- L'équation d'une droite est de la forme y = ax +b
    Il s'agit donc d'une droite, rep a

    Ici z ≠ 0, donc le plan n'est pas parallèle à l'axe des cotes. donc pas b.

    Je sais que le plan (xOy) a pour équation y = 0, mais je trouve cela bizare pas rapport à ma réponse précédente....

    6 - Alors remplaçons x et par :
    A = 2(-1) -3(-1) = 1 <=> -2 + 3 = 1 , donc rep a
    B = 2(5) - 3(1) = 1 <=> 10 -3 ≠ 1, donc pas rep b
    C = 2(5)-3(3) = 1 <=> 10 - 9 = 1, donc rep c

    7- Comme,nt faire pour calculer je remplace z par 2, ou je remplace par les coordonnées ?

    8- Je pense qu'ils ne sont pas parallèles, car en multipliant le premier par k, on n'obtient pas le deuxième.
    Pour les deux autres, je sais pas (mais mon cours n'est pas encore terminé). Toutefois, sis vous aviez la gentillesse de m'aider, sans le corus, ce serait sympa

    9 - Pour un point, je pense ?¿
    On voit que x = 0, or cela ne concerne que l'axe des abscisses, donc b et pas c



  • Bon

    Tout me semble bon jusqu'à la 4) comprise

    l'équation y = ax + b est l'équation d'une droite ... dans le plan pas dans l'espace
    dans le plan z = 0 ce sera bien une droite mais les z "ont le droit de changer" donc ...

    1. Ok

    Un point de la courbe de niveau z = 2 doit vérifier les équations des 2 surfaces
    Donc A ∈ plan d'équation z = 2 ⇔ les coordonnées de A vérifient cette équation
    et A ∈ S ⇔ les coordonnées de A vérifient l'équation de S

    y=2 est l'équation d'un plan ......
    z=-3 est l'équation d'un plan ......

    Donc la résolution du système donnerait l'intersection de ces 2 plans qui est ????



  • Pour la 4, je demandais une aide pour démontrer si ils sont ou non opposés 🙂

    5- Donc, pas de a.
    Je vois bien (à l'aide du graphique) que ce n'est ni parallèle à l'axe des cotes, ni perpendiculaire au plan (xOy). Comment le justifier ?

    7- Après réflection, je n'ai pas vu non plus les courbes de niveau, j'ai mon cours demain, cela devrait donc m'aider à comprendre tes explications.

    9- Ben l'intersection de deux plans c'est un point, non ?

    Merci 🙂



  • Salut, alors pour la question 8, en effet la réponse a est fausse. et la réponse b qui dit que les 2 plans sont confondus est fausse.
    Je donnerais comme explication que si 2 plans sont confondus, cela signifie que n'importe quel point du premier plan appartient au 2ème plan.

    Or, le point A(0;1;1) appartient au plan d'équation 2y-z-1=0 puisque 21-1-1=0
    Or, il n'appartient pas au plan d'équation -4y+2z+3=0 car -4
    1+2*1+3=1 et non pas à 0.

    Donc la b est fausse aussi.

    Pour ce qui est de la réponse c je ne suis pas tout à fait sure mais je pense qu'ils ne sont pas non plus sécants. mais je ne sais pas si ma démonstration serait très compréhensible donc dès que je trouve quelquechose de valable je le posterai.



  • Pour la 9 tu dois quand même savoir les 3 positions relatives de 2 plans depuis fort longtemps ! Deux plans P et P' sont :

    • confondus (ce n'est pas le cas ici puisque y=2 est l'équation d'un plan vertical et z=-3 est l'équation d'un plan horizontal)

    • parallèles (ce n'est pas le cas ici pour la même raison)

    • sécants et alors leur intersection est .......
      Pour le savoir regarde autour de toi : dans la pièce où tu es, tu choisis un plan horizontal = le plancher et un autre vertical = un des murs .... quelle est leur intersection ??? un seul point ???
      Autre exemple quand tu ouvres un livre pas entièrement (pas à plat) chaque page est un exemple de 2 plans sécants et l'intersection de ces 2 plans est figurée par quoi ?
      Autre exemple dans la rue, tu as déjà vu des plans inclinés pour aider les handicapés ou les livreurs à monter quelques metres, ce plan incliné est un plan sécant au plan du trottoir et quelle est la partie commune de ces 2 plans ?



  • Pour le 5), dans l'espace une équation a la forme ax+by+cz+d=0, donc ce n'est pas l'équation d'une droite. Donc pas a.

    Si un plan est parallèle à l'axe des cotes, alors P=ax+by+d=0
    Cependant, les "z" peuvent changer. Ainsi l'équation y=3x-1 est une équation d'un plan parallèle à l'axe des cotes.

    Pour la perpendicularité, y a-t-il un rapport avec le fait que le plan (xOy) a pour équation y = 0 ?

    1. J'ai moyennement compris, ce que tu me disais, mais voici la méthode que j'utilise :

    Il faut que les coordonnées du point, vérifient les deux équations.
    Si z = 2, le point A ne peut-être utilisé, car z= 4.

    Vérifions maintenant avec B (1;2;2) :

    2=1³ - 2 + 3
    2=2

    Avec C (2;1;2)
    2=2²-1+3
    2=4-1+3
    2≠6

    La seule réponse est b.

    1. Si P = z-2y+1=0, alors vecteur n(0;-2;1) est normal à P.
      Si P' = 2z - 4y + 3=0, alors vecteur n'(0;2;4) est normal à P'
      On constate qu'il n'existe pas de réel k unique et non-nul, tel que vecteur n = k n' (vecteur), donc vecteur n et n' ne sont pas colinéaires et P P' ne sont pas parallèles.

    Pour le b, j'utilise la même méthode 🙂

    Donc pour le c), je cherche aussi

    1. Le système de deux équations est un système qui définit une droite parallèle à l'un des axes de coordonnées.

    Ici, le système a pour équation :
    { y = 2
    { z=-3 avec 2 et -3 non-nuls simultanément
    Par conséquent le système d'équation ne peut définir qu'une droite parallèle à l'axe des abscisses.

    Il ne s'agit pas d'un point, car l'intersection de deux plans ne peut être qu'une droite.

    Voila 🙂
    Qu'en pensez-vous ?
    Pouvez-vous m'aider pour les inconnues qu'il manque, svp ?



  • Pour le 8c, je viens de trouver ceci sur le net :

    d est une droite et P un plan de l’espace. Il n’existe que trois possibilites :
    (a) la droite et le plan n’ont qu’un point commun, la droite et le plan sont dits secants.

    Est-ce applicable ?



  • coucou
    je débarque
    pour la 8 tu as deux plans pourquoi tu me parles de droite ?



  • Je me suis trompé en copiant, c'est plutôt :

    P et Q sont deux plans de l’espace.
    les plans ont un point commun et sont distincts, alors ils sont secants suivant une droite passant par ce point, (ainsi deux plans distincts qui ont deux points communs sont secants suivant la droite definie par ces deux points)

    Mais bon, pour démontrer ca, c'est pas du gateau, lol !



  • Citation
    Si P = z-2y+1=0, alors vecteur n(0;-2;1) est normal à P.
    Si P' = 2z - 4y + 3=0, alors vecteur n'(0;2;4) est normal à P'

    alors l'idée est bonne mais tu as fait des erreurs

    dans un répère orthonormal le vecteur n(a;b;c)\vec{n} (a;b;c) est normal au plan d'équation ax+by+cz+d=0ax + by + cz + d =0

    à toi de les corriger et de me dire ce que tu trouves
    on verra ensuite ce qu'on va en tirer



  • Oui, en effet, n'(0;-4;2)

    Et la ca inverse la situation, car on voit que n'=2n, donc n et n' sont colinéiares et P et P' sont parallèles.

    Erreur très bête !



  • oui n(0;2;1)\vec{n}(0;-2;1) et n(0;4;2)\vec{n'}(0;-4;2)

    en effet ils sont colinéaires
    😄



  • Pour le reste, est-ce bon ?

    Le 4) la dernière rép ? / et le 5 ?



  • Zorro a dit dans l'un de ses posts que la 4 était bonne donc je ne regarde pas
    pour la 5)
    tu me dis que ça y= 3x -1 ce n'est pas l'équation d'une droite ?!
    je ne sais pas ce qu'il te faut dans ce cas mdr



  • Pour la 4, si tu regardes bien, je ne suis pas arrivé à répondre pour dire si ils sont ou non opposés. 🙂

    y= 3x -1 est bien l'équation d'une droite, même si dans l'espace elle doit être de la forme ax+by+cz+d=0, c'est ça ?



  • si tu as prouvé que les vecteurs ne sont pas colinéaires comment veux-tu qu'ils soient opposés ...
    tu aurais eu u=v\vec{u} =- \vec{v}
    ils sont orthogonaux c'est tout

    alors y=3x1y= 3x -1 c'est l'équation d'un droite et c'est tout
    ax+by+cz+d=0ax+by+cz+d=0 c'est léquation d'un plan

    ouai je pense savoir ce qui te gène
    une droite c'est en 2D un plan c'est en 3D(la plupart du temps)

    ok ?!



  • Ok, merci pour la remise à niveau.
    Je crois que tout est ok.

    Oups, non...
    J'ai toujours le problème des plans sécants (8). Est-ce que ce que j'avais trouvé sur le net, est ce que je dois démontrer ? (bizare cette phrase)

    Pour le 5, c'était par rapport au plan perpendiculaire.

    Voila, merci beaucoup de votre aide.



  • mais la 😎 c'est la question où on a prouvé que les plans sont colinéaires c'est ça ?! s'ils sont colinéiares ils ne peuvent pas être sécants

    pour la 5) je ne comprends pas ta question ...



  • A moins que je ne me trompe, mais au 5, il me semble que l'on a pas justifié si c'était ou non perpendiculaire.



  • tu regardes les vecteurs pour savoir s'il y a perpendicularité ... le truc habituel ...



  • Pour la 8 tu as trouvé qu'ils étaient parallèles mais tu n'a pas vérifié si ils sont ou pas confondus !

    Il faut trouver un point du plan P et regarder s'il appartient ou non à P'



  • Pour le 8, j'ai juste utilisé la méthode de mon cours.
    C'est forcément nécessaire ?



  • Ta méthode pour démontrer qu'il sont // est la bonne.

    Mais tu dis toi même qu'il faut tout justifier ! Donc il faut justifier qu'ils sont ou non confondus. Tu comprends ce que je t'ai indiqué comme méthode ?



  • J'ai un problème avec le 5,

    Je suis d'accord qu'il s'agit de l'équation d'une droite.
    Mais si c'est une droite, ca ne peut pas être l'équation d'un plan.
    Ou est-ce que j'ai rien compris ?

    Pour la 8, merci de me l'avoir rappelé, j'avais oublié de justifier qu'ils étaient confondus.
    Pour trouver le point, je le cherche via le mode graphique de ma calcultette et j'essaye, ou je résout le système, ou bien autre chose ?

    Citation
    mais la 😎 c'est la question où on a prouvé que les plans sont colinéaires c'est ça ?! s'ils sont colinéiares ils ne peuvent pas être sécantsNon, c'est celle où l'on vérifie si ils sont ou non confondus, mais qui sont parallèles.



  • Pour démontrer que les points ne sont pas confondus il faut trouver un point du plan P et regarder s'il appartient ou non à P' .

    Pour un point de P tu prends A(0;0;z) et tu cherches z qui correspond
    z= 2y - 1
    z= 2*0 - 1 = -1

    donc il faut regarder si A(0;0;-1) appartient au plan d'équation

    2z - 4y + 3 = 0



  • Alors cela fait :

    2(-1)-4(0)+3=0
    -2+3=0
    1≠0
    Donc pas confondus ?



  • ba oui



  • Dacc. Merci bcp.

    Je reviens au 5, je n'y arrive toujours pas, malgré l'aide.

    Donc d'après ce que l'on m'a expliqué, ce n'est pas une droite, mais un plan.
    Est-ce juste ? Et par rapport aux dautres réponses ?


Se connecter pour répondre
 

Découvre aussi nos cours et fiches méthode par classe

Les cours pour chaque niveau

Progresse en maths avec Schoolmouv

Apprends, révise et progresse avec Schoolmouv

Encore plus de réponses par ici

Il semble que votre connexion ait été perdue, veuillez patienter pendant que nous vous re-connectons.