nombres consécutifs et carré parfait


  • B

    Bonsoir,
    Pendant que je feuilletais un manuel de maths, je tombai sur un exercice plus ou moins dur...ce serait si gentil de m'aider!
    Citation
    Sachant que a et b sont 2 nombres entiers consécutifs, démontrer que a²+b²+(ab)² est un carré parfait

    Voilà tout....Je me suis fatiguée en essayant de le résoudre vainement. J'espère que vous réussissez à le faire!
    Cordialement
    Abir

    $_{modification du titre "aidez-moi" qui est l'archétype du titre à ne pas utiliser, il faudrait lire les consignes avant de poster...}$


  • J

    Il faut remplacer b par a+1 (puisqu'ils sont consécutifs) et on obtient quelque chose d'intéressant... Voilà !


  • B

    j-gadget
    Il faut remplacer b par a+1 (puisqu'ils sont consécutifs) et on obtient quelque chose d'intéressant... Voilà !

    J'ai déjà essayé ça....Mais ça donne toujours quelque chose de compliqué....Aidez moi svp!!!


  • J

    J'ai testé pour quelques valeurs, et j'ai trouvé un truc miracle...

    a² + b² + (ab)² = (ab + 1)²

    En effet :

    a² + b² = a² + (a+1)² = 2a² + 2a + 1 = 2a(a+1) + 1 = 2ab + 1

    Donc :

    a² + b² + (ab)² = (ab)² + 2ab + 1 = (ab + 1)²

    On y arrive, mais alors à coups d'identités remarquables. Voilà !


  • B

    Merci beaucoup j-gadget!


Se connecter pour répondre