exercice de spécialité: surfaces
-
Xxaphania dernière édition par
Bonjour à tous!
Je recherche un peu d'aide pour un exercice de spécialité maths auxquels je ne comprend vraiment pas grand chose Merci d'avance.Voici l'exercice:
Soit f la fonction numérique de deux variables réelles, définie par:
f(x;y)=x²+y²-4x+2y
et soit (S) la surface représentant cette fonction, c'est-à-dire l'ensemble des points (x;y;z) de R³ tels que z=f(x;y).-
Déterminer trois réels xo; yo et a tels que, pour tout couple (x;y) de réels, on ait l'égalité: f(x;y)=(x-xo)²+(y-yo)²+a.
En déduire que, pour tout x et tout y réels, on a l'inégalité f(x;y) ≥ -5. -
Construire dans un repère (O; i ; j) les projections de l'intersection de (S) et des plans z=4 et z=-4
-
Quelle est la section de (S) par le plan y=0?
Pour la question 1, j'ai essayé d'isoler des éléments mais je tombe sur 0, ce qui je suppose ne doit pas être ça et pour les questions 2 et 3 j'avais pensé faire un système, mais cela ne me mène à rien de concluant.
Merci à toute personne qui pourrait m'aider
-
-
Bonjour,
x2x^2x2 - 4x = (x - 2)22)^22)2 - 4
y2y^2y2 + 2y = (y + 1)21)^21)2 - 1
Donc je te laisse continuer !