aires de triangles dans un rectangle


  • K

    Bonjour,

    J'ai un soucis avec mon dtl:

    Je mets l'énoncé:

    -ABCD est un rectangle tel que AB=5cm et AD=4cm.
    E est le point de [AB] tel que AE=1cm.
    On note x la longueur BF en cm.

    1. Dans cette question, on prend x=1cm. Calculer alors en cm² dans cet ordre l'aire de AED, l'aire de BEF, l'aire de FDC puis en déduire l'aire de EFD.

    J'ai trouvé, espérant que ce soit bon:

    L'aire de AED:
    ( AEAD) / 2
    (4
    1) / 2 =4 /2= 2cm²

    L'aire de BEF:
    (BEBF) / 2
    (4
    1)/2 = 4/2= 2cm²

    L'aire de FDC:
    (FCCD) / 2
    (3
    5)/2=15/2=7.5cm²

    Faut-il utiliser le théorème de Pythagore pour trouver la surface de EFD?


  • J

    Salut.

    J'ai les même résultats que toi. 😄

    Pour la dernière question, il y a plus astucieux. Si tu regardes bien, l'aire de EFD c'est l'aire du rectangle moins l'aire de chacun des 3 triangles AED, BEF et FDC. 😉

    @+


  • K

    Merci:)

    Ensuite j'ai fait:

    Aire EFD = aire de ABCD- (aire de AED+aire de EBF+aire de FDC)=5*4-(2+2+7.5)=20-(2+2+7.5)=20-11.5=8.5

    -Démontrer que l'aire (en cm²) de EDF est égale à 8+0.5x
    La je bloque je ne sais pas comment démontrer


  • J

    Salut.

    Il suffit de faire comme précédemment sans remplacer x par 1cm. Par exemple l'aire de BEF vaut BE×BF/2 = 4x/2 = 2x cm². Si tu mènes les calculs jusqu'au bout, tu devrais retomber sur le résultat demandé. 😄

    @+


  • K

    Je passe la question suivante car je n'y arrive pas

    Cette fois j'ai:

    Résoudre l'équation:

    8+0.5x=9.5

    8+0.5x-8=9.5-8

    0.5x=1.5

    0.5x/0.5=1.5/0.5

    x=3


  • K

    -Démontrer que l'aire (en cm²) de EDF est égale à 8+0.

    Je précise que F est un point de BC

    La je bloque je ne sais pas comment démontrer


Se connecter pour répondre