probleme pour un devoir de math


  • F

    je suis en 5eme me je ne sais pas fait sertent excercice

    la longeur de CB=x

    AB=4
    CD=2x
    et DA=6
    et que ABC forme un triangle rectangle en B
    et que CDA forme un triangle rectangle en D
    et que c'est deux triangle sont colle sur le segment CA

    l'unite est en cm

    1donner une expresion du perimetre du quadrilatere ABCDen fonction de x
    2donner une expression de l'aire du du quadrilatereABCDen fonction de x
    3calcule le perimetredu quadrilatereABCD pour x =3
    4pour quelle valeur de x l'aire du quadrilatereABCD est -elle a 28cmcarre

    excice 2
    sur la figure on a :
    BC=4
    AC=5
    BH=2.4
    1calculer l'aire du triangle ABC
    2calcule l'aire du triangle abc deb fonction de ba
    3 en deduire la valeur ab

    que ve dire en fontion et expression et aire
    merci davance pour le reponse 😄


  • J

    Salut.

    Tu as vu en classe antérieure des calculs tels que "5+4" ou encore "(10/3)+(5/2)".
    Par exemple, posons A=5+4. Alors 5+4 est l'expression de A.

    Maintenant, prenons une valeur x: c'est un nombre. Et on pose B=4x+3. Alors 4x+3 est l'expression de B en fonction de x: ça veut dire que dans le calcul il y a un nombre x qui se balade. Comme x n'est apparement pas un nombre bien défini (tel que présenté ici, x peut être égal à 1, à 10, à 0,5), on notera à côté de B: "(x)"; Pour informer que la valeur de B n'est définie que si on a fixé B. Mais cela n'est pas forcement obligé en 5ème.

    B(x)=4x+3
    Pour x=2 par exemple, on va remplacer x par 2 dans l'expression de B ci-dessus. Ce qui donne:
    B(2)=(4*2)+3=11. Donc si x=2, B=11.
    De même, si x=0, alors B(0)=3.

    Il apparait donc clairement que selon la valeur de x, la valeur de B change.
    C'est ce que l'on appelle être en fonction de x.


    Maintenant, intéressons-nous à ce qu'est un périmètre.

    Prenons par exemple un triangle. Pour le tracer, il faut tracer ses 3 côtés qui ont chacun une certaine longueur. Et bien la somme des longueurs de ces côtés s'appelle le périmètre.

    En généralisant, le périmètre est la longueur du pourtour d'une figure plane: la ligne qui sépare l'intérieur de la figure, et l'extérieur de la figure.

    Dans ton premier exercice, le périmètre P (P pour périmètre) de ton quadrilatère ABCD, est P=AB+BC+CD+DA. Donc la somme des quatres côtés de ta figure.

    Comme les longueurs BC et CD sont exprimées en fonction de x, P sera donc en fonction de x.


    Passons à l'aire d'une figure.

    On a définit le pourtour d'une figure. A l'intérieur de ce pourtour, il y a une surface. Cette surface est dénommée l'aire.

    L'aire s'exprime en m². Ici, l'unité pratique à utiliser est le cm², pour éviter d'avoir à faire des conversions.

    Le nombre de cm² représente en fait le nombre de carrés de 1 cm de côté que tu peux insérer dans ta figure.

    Par exemple, dans un carré de 2 cm de côté, tu peux y insérer 4 carrés de 1 cm de côté. L'aire de ce carré de 2 cm de côté est donc 4 cm². en passant, le périmètre de ce carré est égal à 2+2+2+2=8cm.

    Pour calculer l'aire d'une figure, il te faudra utiliser des relations que tu as sûrement du voir en cours.

    Ici, tu as besoin d'au moins 2 relations: l'aire d'un rectangle, et l'aire d'un triangle.

    Cherche un peu dans ton cours. Il sert à ça. Ca m'étonnerait que tu aies un devoir à faire de ce genre sans jamais avoir vu la définition d'une aire, et comment la calculer.

    @+


  • F

    qui pe faire mon excercice 😕 stp


  • F

    salut

    essaie de faire quelque chose de ton coté en rends nous compte de ce que tu aura pu faire, on t'aidera à avancer.

    a+


  • F

    je pe pas mon pro ma donne sa sens les cour car jete malade et il est bizarrre mon prof sa fait 1 semaine que je suis malade et il ma envoyer mon devoir par courier car je suis a 10 km de mon colege 😕 qui pe me le faire


  • M

    salut!ce n'est pas aux autres de faire ts exercices essaie de le faire et quand tu coinces tu nous le dis et nous on essaye de t'aider.Il ya bien quelque chose que t'arrive à faire dans cet exercice non?


Se connecter pour répondre