Devoir maison Géométrie classe 2nde


  • T

    Bonjour,
    j'ai un exercice de mon devoir maison que je ne comprends pas: j'ai essayé de le faire.
    voici le sujet

    Exercice 3
    Dans cet exercice, l'unité de longueur est le centimètre. C . est un cercle de centre 0 et de
    rayon 2. .
    A, B et C sont trois points de . C disposés comme l'indique la figure ci-contre avec l'angle BOC = 90°
    et l'angle AOB=60°.

    1. Calculer en degrés la mesure des angles du triangle ABC.
    2. Calculer AB et montrer que AB = 2 sqrtsqrtsqrt2
    3. On trace la perpendiculaire à (AC) passant par B. Elle Coupe (AC) en H.
      a) Calculer CH et AH. ~ .
      b) En déduire que le périmètre du triangle ABC est égal à 2+3sqrtsqrtsqrt2 +.sqrtsqrtsqrt6.

    voila ce que j'ai fais:
    Exercice 3

    1/On sait que l'angle BOC =90° et l'angle ADB= 60°.
    Si on trace le triangle COA on s'apperçoit qu'il est isocèle. Donc l'angle COA=90°+60°= 150°.
    On sait que dans un triangle la somme des angles est égale a 180° donc ici 180-150=30 et 30/2= 15° Les angles OCA et OAC sont tous deux égaux a 15°.
    Comme OC=OB=2 le triangle OCB est isocèle, donc les angles B et C sont égaux a 180-90=90/2=45°. Les angles OCB et OBC sont égaux a 45°.
    Donc dans le triangle ABC, l'angle C est égal a 45°-15°=30°.
    L'angle ACB=30°.

    Le triangle AOB est isocèle car OA=OB+AB donc il est aussi équilatéral.
    Ses angles sont égaux a 60°. L'angle CAB est égal a 60°-15°=45°
    L'angle CAB = 45°.

    Pour finir l'angle CBA = 180-(CAB+ACB)
    CBA= 180-(45+30)=105°.
    L'angle CBA=105°.

    2/ Les points B et A appartiennent au cercle ils sont donc a égale distance du centre O.
    Donc OA=OB si OA=OB, B est a égale distancede O et de A, donc OB=OA=AB
    AB=2cm

    3/ On sait qu'une hauteur coupe un angle en deux donc :
    ABO/2 = 60/2= 30°
    J'utilise le sinus
    Sin 30°= HA/AB
    Sin 30°= 2*sin30° =1
    AH = 1cm. -

    j'ai trouvé 2cm pour AB alors que dans le sujet on me dit que AB= 2sqrtsqrtsqrt2

    Est ce que quelqun, un correcteur ou un éleve d'une classe supérieure pourrait me corriger svp?
    merci d'avance

    pour la figure donner moi votre email je vous l'envoie de suite.


  • Zorro

    J'ai fait une impression de tout ce que tu nous racontes.

    J'aurais peut-être une réponse, mais ce soir je dois me déconnecter.

    A bientôt.


  • Zorro

    Ta démonstration de AOB équilatéral est à préciser :
    Tu pars bien du fait que c'est un triangle isocèle OA=OB donc les angles OAB et ABO valent (180-60)/2 = 60° donc triangle équilatéral.
    Donc je suis comme toi je trouve AB = 2.

    Où est l'erreur ?? je ne vois pas !! moi je trouve BC = 2 sqrtsqrtsqrt2

    Dans le 3) "une hauteur coupe un angle en deux ??????" ce n'est pas vrai dans un triangle quelconque
    Tu sais que angle HAB = 45° utilise sin45° (dans AHB rectangle en H) pour calculer AH
    Après il faut calculer BC dans le triangle rectangle OBC
    Connaissant BC on peut utiliser cos30° (dans le triangle rectangle HBC) pour calculer CH


  • T

    je comprends pas vous trouvez AB=2 comme moi!
    mais comment arrivez vous a BC=2 sqrtsqrtsqrt2


  • Zorro

    Torero
    je comprends pas vous trouvez AB=2 comme moi!
    mais comment arrivez vous a BC=2 sqrtsqrtsqrt2

    Dans OBC rectangle en O tu peux utiliser Pythagore.
    Tu as fais beaucoup plus compliqué depuis le début de ton devoir !


Se connecter pour répondre