Problème mathématiques


  • William 1

    Soit a et b deux réel tel que:
    a² + b² =5 et a³ +b³ =7
    Trouver les trois valeur possible de a+b.


  • N
    Modérateurs

    @William-1 Bonsoir (Marque de politesse à ne pas oublier !!)

    Utilise le développement de :
    (a+b)2(a+b)^2(a+b)2
    (a+b)3(a+b)^3(a+b)3
    et pose a+b=Sa+b = Sa+b=S et a×b=Pa\times b= Pa×b=P

    résous ensuite le système.


  • K

    @Noemi
    (a + b)² = a² + 2ab + b²
    (a + b)² = a² + b² + 2ab → given that: a² + b² = 5
    (a + b)² = 5 + 2ab

    (a + b)³ = (a + b)².(a + b)
    (a + b)³ = (a² + 2ab + b²).(a + b)
    (a + b)³ = a³ + a²b + 2a²b + 2ab² + ab² + b³
    (a + b)³ = a³ + b³ + 3a²b + 3ab²
    (a + b)³ = (a³ + b³) + 3ab.(a + b)
    (a + b)³ - 3ab.(a + b) = a³ + b³ → given that: a³ + b³ = 7
    (a + b)³ - 3ab.(a + b) = 7
    (a + b)².(a + b) - 3ab.(a + b) = 7 → recall: (a + b)² = 5 + 2ab
    (5 + 2ab).(a + b) - 3ab.(a + b) = 7
    (a + b).[(5 + 2ab) - 3ab] = 7
    (a + b).(5 + 2ab - 3ab) = 7
    (a + b).(5 - ab) = 7
    (a + b) = 7/(5 - ab) → you square
    (a + b)² = 49/(5 - ab)² → recall: (a + b)² = 5 + 2ab
    5 + 2ab = 49/(5 - ab)²
    (5 + 2ab).(5 - ab)² = 49
    (5 + 2ab).(25 - 10ab + a²b²) = 49 → let: ab = x
    (5 + 2x).(25 - 10x + x²) = 49
    125 - 50x + 5x² + 50x - 20x² + 2x³ = 49
    2x³ - 15x² + 76 = 0
    2x³ - (19x² - 4x²) + (38x - 38x) + 76 = 0
    2x³ - 19x² + 4x² + 38x - 38x + 76 = 0
    2x³ - 19x² + 38x + 4x² - 38x + 76 = 0
    (2x³ - 19x² + 38x) + (4x² - 38x + 76) = 0
    x.(2x² - 19x + 38) + 2.(2x² - 19x + 38) = 0
    (x + 2).(2x² - 19x + 38) = 0

    First:
    (x + 2) = 0
    x = - 2 → recall: ab = x
    ab = - 2

    Second:
    2x² - 19x + 38 = 0
    x² - (19/2).x + 19 = 0
    x² - (19/2).x + (19/4)² - (19/4)² + 19 = 0
    x² - (19/2).x + (19/4)² - (361/16) + 19 = 0
    [x - (19/4)]² - (361/16) + 19 = 0
    [x - (19/4)]² - (57/16) = 0
    [x - (19/4)]² = 57/16
    x - (19/4) = ± (√57)/4
    x = (19/4) ± (√57)/4
    x = (19 ± √57)/4 → recall: ab = x
    ab = (19 ± √57)/4

    3 cases to be study
    First case: ab = - 2
    Second case: ab = (19 + √57)/4
    Third case: ab = (19 - √57)/4

    Restart
    (a + b)² = 5 + 2ab → where first case: ab = - 2
    (a + b)² = 5 - 4
    (a + b)² = 1
    a + b = ± 1 → where first case: ab = - 2 → b = - 2/a
    a - (2/a) = ± 1
    a² - 2 = ± a
    a² ± a = 2
    a² ± a + (1/2)² - (1/2)² = 2
    a² ± a + (1/2)² = 2 + (1/2)²
    [a ± (1/2)]² = 9/4
    a ± (1/2) = ± 3/2
    a = ± (1/2) ± (3/2)

    First solution: a = (1/2) + (3/2) → a = 2 → b = - 1
    Second solution: a = (1/2) - (3/2) → a = - 1 → b = 2
    Third solution: a = - (1/2) + (3/2) → a = 1 → b = - 2
    Fourth solution: a = - (1/2) - (3/2) → a = - 2 → b = 1

    Restart
    (a + b)² = 5 + 2ab → where second case: ab = (19 + √57)/4
    (a + b)² = 5 + [(19 + √57)/2]
    (a + b)² = (10 + 19 + √57)/2
    (a + b)² = (29 + √57)/2
    a + b = ± √[(29 + √57)/2] → where second case: ab = (19 + √57)/4 → b = (19 + √57)/4a
    a + [(19 + √57)/4a] = ± √[(29 + √57)/2]
    4a² + (19 + √57) = ± 4a√[(29 + √57)/2]
    4a² ± 4a√[(29 + √57)/2] + (19 + √57) = 0
    …to be continued


Se connecter pour répondre