La démarche est correcte mais l'absence de l'exposant rend difficile la compréhension.
Un+1−Un=(2n+1−40(n+1)−20)−(2n−40n−20)U_{n+1}-U_n=(2^{n+1}-40(n+1)-20)-(2^n-40n-20)Un+1−Un=(2n+1−40(n+1)−20)−(2n−40n−20)
Un+1−Un=2n+1−40n−40−20−2n+40n+20U_{n+1}-U_n=2^{n+1}-40n-40-20-2^n+40n+20Un+1−Un=2n+1−40n−40−20−2n+40n+20
Un+1−Un=2×2n−40−2nU_{n+1}-U_n=2\times 2^n-40-2^nUn+1−Un=2×2n−40−2n
Un+1−Un=2n−40U_{n+1}-U_n=2^n-40Un+1−Un=2n−40
Pour n≥6n \geq 6n≥6
Pour n=6n= 6n=6 ; 2n=64>402^n= 64 \gt 402n=64>40
donc ....