Déterminer si une expression est un polynôme


  • A

    [message privé : supprimé]

    aller c parti !

    je suis sur les polynomes et c'est dur

    voici ma 1ere question

    1/ est ce que par exple ceci est un polynôme

    45−4x4×35+4x845-4x^4\times3\sqrt{5}+4x^8454x4×35+4x8

    car ce que je comprends pas c'est que ds les polinomes quee je vois ds mon livre, ils st tous rangés ds l'ordre c'-à-d. qu'il y a les x^5 puis les x^4 pui les x^3, etc.

    J'ai amélioré la syntaxe de ton 1er message, Alex (N.d.Z.)


  • Zauctore

    La réponse à ta 1ère question est : oui.

    Un polynôme est une somme algébrique de puissances d'exposants positifs de x : en général, cela s'écrit

    a+bx+cx2+dx3+⋯+mxna + bx + cx^2 + dx^3 + \cdots + m x^na+bx+cx2+dx3++mxn

    où les lettres a, b, c, ... m représentent des nombres quelconques, mais fixés.

    Ceci qui est identique à

    mxn+⋯+cx3+bx2+am x^n + \cdots + cx^3 + bx^2 + amxn++cx3+bx2+a

    parce que l'addition des nombres relatifs est commutative : l'ordre n'a pas d'importance - même si en général on préfère écrire le polynôme en commençant par la plus "haute" puissance.

    A l'inverse, ceci n'est pas un polynôme :

    2x2−5x+3x−10x4\frac{2}{x^2}-\frac{5}{x}+3x - 10x^4x22x5+3x10x4

    parce que la variable intervient en diviseur dans les deux premières fractions.


  • A

    merci bcp
    est ce possible kil y ai d trou ds les exposant
    je mexplik
    svt a les x^4 pui les x^3 pui les x^2 etc
    mai moi d foi g 23x^8*3racine5+4x^4
    je nai pa une continité ds les puissance
    c normal?

    apres peu tu me dire ds mn expression suivante si je la met sur un denominateur de 3-2racine2 kel sn les nbres a b c d...
    tu me comprends?


  • Zauctore

    Bien entendu ; par exemple 5x² - 3 est un trinôme du second degré qui ne contient pas de terme en x... sauf si on l'écrit 5x² + 0x - 3.

    Des coefficients peuvent être égaux à 0, ce qui fait disparaître les puissances concernées.


  • Zauctore

    "apres peu tu me dire ds mn expression suivante si je la met sur un denominateur de 3-2racine2 kel sn les nbres a b c d...
    tu me comprends?"

    non : j'ai du mal avec la syntaxe sms, et de quelle expression veux-tu parler ?


Se connecter pour répondre