Calcul d'une dérivée (fonction en éco)
-
AAnimatrix dernière édition par
Bonjour à tous,
J'ai un exercice à faire en Dm, et j'aimerais avoir votre aide sur comment résoudre l'exercice. le voici :
Une étude effectuée sur un certain article a conduit à établir la relation suivante :
f(p) = (105(10^5(105 × 6p) / (36p² - 100)
Pour p ∈ [2 ; +∞ [, où p représente le prix du produit en euros et f(p) la demande liée à ce produit pour le prix p.
A 1. Calculez la demande pour les valeurs suivantes p = 2; p= 2,5; p = 15
2.a) Vérifiez que f(p) > 0 pour tout p de [2 ; +∞ [
b) Montrez que f est décroissante sur [2 ; +∞ [[la suite viendra si besoin]
Pour le 1, aucun souci.
Pour le 2 :
a) Je ne vois pas comment le prouver
b) Je pense qu'il faut étudier le signe de la dérivé
-
salut animatrix,
pour le a), p≥2, donc 36p²≥? et 36p²-100 ?
pour le b), il faut effectivement dériver et étudier le signe de la dérivée.
-
AAnimatrix dernière édition par
Pour le a), je ne vois pas réellement comment faire.
Je ne vois pas coment cela pourrait justifier. pourrais-tu m'expliquer stp ?
-
Salut
Je prends la suite de ray
- Pour le dénominateur de f(p) = (105 × 6p) / (36p² - 100)
$\begin{align}x \geq 2 &\Rightarrow &p^2 \geq 4\ & \Rightarrow &36p^2 \geq 144 \ &\Rightarrow &36p^2 - 100 \geq 44. \end{align}$
- Pour le numérateur de f(p)
puisque p dépasse 2, alors p est strictement supérieur à 0 ; le numérateur n'étant jamais nul, la fraction f(p) est toujours différente de 0.
- Conclusion : f(p) a un numérateur strictement positif et un dénominateur strictement positif lui-aussi ; donc f(p) est strictement positive (lorsque p dépasse 2).
-
AAnimatrix dernière édition par
Merci.
Vu la démonstration, tu dis que le dénominateur est sup ou égal à 0.
Comment faire pour passer à la conclusion que
Citation
dénominateur strictement positif lui-aussi?
-
Non : je dis que le dénominateur est supérieur à 44 ; il est donc à plus forte raison strictement supérieur à 0.
-
AAnimatrix dernière édition par
Dac.
Une petite question concernant les dérivées, car j'ai beau chercher, mais je ne trouve pas comment trouver u'(x) et v'(x), avec un f(x) u / v.
-
-
AAnimatrix dernière édition par
Est-ce que pour la fonction donnée (càd f(p) = (105 × 6p) / (36p² - 100) ),
f'(p) = (180x²) / (36x² - 100)² ? car je ne suis vraiment pas sûr.
Si vous trouvez un résultat différent, pourriez-vous me le donner pour voir, svp ?
-
si
f(p)=105×6p36p2−100=u(p)v(p)f(p) = \frac{ 10^5 \times 6p}{ 36p^2 - 100} = \frac{ u(p)}{ v(p) }f(p)=36p2−100105×6p=v(p)u(p) donc f '(p) = ......
u(p)=105×6pu(p) = 10^5 \times 6pu(p)=105×6p donc u'(p) = ......
v(p)=36p2−100v(p) = 36p^2 - 100v(p)=36p2−100 donc v'(p) = .....
Un - s'était glissé à la place d'un ×, N.d.Z.
-
Non la dérivée ne semble pas être celle-là,
tu as f(p)=(105f(p)=(10^5f(p)=(105 × 6p) / (36p² - 100)donc f'(p)= [(105[(10^5[(105 × 6p)'× (36p² - 100)-(36p² - 100)'×(105(10^5(105 × 6p)]/(36p² - 100)²
Je te laisse terminer le calcul, dis-nous ton résultat, que l'on voie s'il est juste.
-
AAnimatrix dernière édition par
Alors, déjà pour voir si je ne me plante pas sur les u' et v', je trouve que :
u'(p) = 6x10^5
v'(p) = 6p
-
ta dérivée de v' est fausse, (ap²)'=2ap
-
AAnimatrix dernière édition par
Ce serait donc :
ap² = 2ap
36p² = 72p ?donc v' = 72p ?