ex 3 d'un dm avec l'équation d'une sphère
-
Mmaxime72 dernière édition par
Salut,
je cite : " Soit (O;I:J;K) un repère orthonormal de l'espace."
1° "Etablir une équation de la sphere S de centre O contenant le point W(2;0;1)"
ma rep : Un point M de coordonnées (x;y;z) ∈ a la sphère.
L'équation d'une sphère est donc : x²+y²+z² = r²Donc dans ce cas :
W∈ a la sphère donc : 2²+0²+1² = r²
donc r²=5vous en pensez quoi ???
Ensuite en 2° "Etablir un système d'équations vérifié par l'intersection de la spère S et du plan P d'équation z=0"
là je vois pas :s
J'attends votre aide merci
maxime
-
Mmiumiu dernière édition par
coucou
C'est bien pour la 1 mais tu n'as pas fini on te demande l'équation de la sphère
2)l' intersection d'un plan et d'une sphère donne un cercle ok?!
les points appartiennent à la sphère et au plan or l'équation du plan c'est z=0 et l'équation de la sphère c'est ... donc ...
-
Mmaxime72 dernière édition par
Merci pour ta rep rapide
donc pour le 1) je vois pas quoi faire de plus :s
donc pour la 2) je vois pas non plus mais meme avec l'équation de la sphere je verrais pas
-
Mmiumiu dernière édition par
mdr
ok ce n'est pas compliqué il faut juste dire l'équation de la sphère de centre O est :
x²+y²+z² = 5
après on a le plan d'équation z=0
et là est-ce que c'est plus clair?
-
Mmaxime72 dernière édition par
ouai donc pour le 1) ok x²+y²+z²= 5 soit r²=5
ensuite au 2) je vois pas comment répondre à "Etablir un système d'équations vérifié par l'intersection de la spère S et du plan P d'équation z=0"
-
Mmaxime72 dernière édition par
donc pour résumé a la 1) j'ai dis :
W∈(S)
W(2;0;1)
donc 2²+0²+1²=r²
4+0+1=r²
donc
r²=5
L'équation de la sphère (S) de rayon r et de centre o est donc r²=5j'ai déja bon là ou pas ? ^^
et pour le 2) c'est le vide je vois pas :s
-
Mmiumiu dernière édition par
- tu as trouvé r²=5
donc tu conclues x²+y²+z²= 5
2)ba je ne sais pas ton système c'est
( x²+y²+z²= 5
( z=0
(c'est une accolade) on fait avec les moyens du bord...
je pense qu'il faut le résoudre c'est bizarre sinon
- tu as trouvé r²=5
-
Mmaxime72 dernière édition par
ouai donc en 2) tu me dis que je dois résoudre le système :
( x²+y²+z²= 5
( z=0
car pour te dire en fait je comprends pas la question, je sais pas quoi répondre :s
-
Mmiumiu dernière édition par
oui tu écris ce système et tu le résouds je pense que c'est ça c'est vrai qu'elle est un peu bizarre cette question
-
Mmaxime72 dernière édition par
Je vois pas comment résoudre :
( x²+y²+z²= 5
( z=0
on sait juste que x=2; y=0; z=1;
r²=x²+y²+z²=5
-
Mmiumiu dernière édition par
ok on reprend la question 1 est finie tu oublies maintenant lol on a nos équations
( x²+y²+z²= 5
( z=0
c'est vraiment très simple ne te torture pas la tête
-
Mmaxime72 dernière édition par
Je vois trop compliqué oui ^^
Donc :
( x²+y²+z²= 5
( z=0( x²+y²+0= 5
( z=0( x²= 5-y²
(y²=5-x²
je sais pas si c'est bon et ce que je dois trouver en fait :s
-
Mmiumiu dernière édition par
Comme c'est l'équation d'un cercle je te conseille de laisser sous la forme x²+y²= 5
comme ça on voit bien que le centre du cercle est O et que le rayon est √5
-
Mmaxime72 dernière édition par
merci