correction incomprise sur exo de systeme (trinome)
-
Ddarkomen dernière édition par
Bonsoir a tous,
Je fait appel a vous car je me refait des exercices que j'ai fait il y a deja quelques mois mais je bloque sur un en particulier auquel je n'arrive pas trop a comprendre la démarche pour le résoudre.
En voici le détails:
$\left{x + y = 15 (S)$
$\left{xy = 44 (P)$x et y sont racines de X² - Sx + P = 0
Δ=S2−4P=225−176=49=72\Delta = S^2-4P = 225 -176 = 49 = 7^2Δ=S2−4P=225−176=49=72
Ce qui donne 2 racines de valeurs 11 et 4.
Je suis bien d'accord que x + y est bien une somme de racines S et
xy un produit de racines P mais en quoi peut-on déduire l'équation ?
X² - Sx + P = 0
et ainsi en quoi peut-on aussi déduire le descriminant de la sorte ?
Δ=S2−4P\Delta = S^2-4PΔ=S2−4PPS:optionnellement comment faites vous pour écrire en LaTeX\LaTeXLATEX un système avec une grande accolade et plusieurs lignes lui correspondant ?
Merci a vous de votre aide8)
-
Bonjour,
Si tu essayes de résoudre ax2ax^2ax2 + bx + c = 0
Tu sais que cette équation est équivalente (en divisant les 2 termes de cette équation par a ) à x2x^2x2 + (b/a) x + (c/a) = 0
et que cette équation possède 2 racines x1x_1x1 et x2x_2x2 tu peux démontrer facilement que
x1x_1x1 + x2x_2x2 = -b / a
et xxx_1x2x_2x2 = c / a
donc si S = -b / a et P = c / a alors .... il ne reste plus qu'à remplacer
-
Ddarkomen dernière édition par
peut-on dire que
l'expression X²-Sx+P=0 est toujours vrai ? est ce une équation a retenir ?