exercice sur tangentes à une hyperbole



  • Exercice:
    Soit H l'hyperbole d'équation y=1/x et Mo un point appartenant à H, d'abscisse xo quelconque.

    1. Déterminer l'équation réduite de la tangente To à H au point Mo.
      2)Déterminer en fonction de xo, les coordonnées des points P et Q d'intersction de To respectivement avec l'axe des abscisses et avec l'axe des ordonnées.
      3)Démontrer que Mo est le milieu du segment [PQ].


  • Bonjour ?

    S'il vous plait ou merci d'avance ?

    Ce n'est pas parce que ce n'est pas ton premier post de la journée qu'il faut oublier que les personnes qui vont lire ceci n'ont pas forcément lu le précédant !!!

    P.S pour écrire M0M_0 il y a sous le cadre de saisie des "bouton" sur lesquel tu as le droit de cliquer.

    Tu auras des balises <sub></sub> qui appraitront sans les * et tu mets l'indice volu entre les balises M<sub>0</sub>

    Tu as un autre bouton "Modifier" sous ton message pour modifier ton message initial.



  • coucou
    tout à fait d'accord Zorro ce n'est pas parce que tu dis bonjour à tes parents le matin que tu ne vas plus dire bonjour de toute la journée 😄

    en plus je parie que tu as dû faire quelque chose ... la question 1 est l'application directe du cours

    Soit f une fonction définie sur un intervalle I et dérivable en un réel aa de I , l'équation réduite de la tangente au point d'abscisse aa de la courbe représentative de f est :

    y=f(a)×(xa)+f(a)y = f '(a)\times (x - a) + f(a)
    tu sais ce qui te reste a faire maintenant


Se connecter pour répondre
 

Il semble que votre connexion ait été perdue, veuillez patienter pendant que nous vous re-connectons.