Factorisation d'une expression somme de produits


  • A

    Bonjour, pouvez-vous m'aiderpour cet exercice s'il vous plaît.

    E = (-3+2x) (5x-2)+(25x²-4)-3(2-5x)

    Vous me serez d'une grande aide si vous pouvez m'aider


  • Thierry
    Modérateurs

    Bonjour,
    As-tu "flairé" le facteur commun ?


  • A

    Bonjour,
    Oui je l'ai trouvé c'est (5x-2)
    Donc ça doit faire :

    (-3+2x) (5x-2)+(5x-2) (5x+2) -3(2-5x)

    Mais une chose me dérange c'est le -3(2-5x)

    😕 Je ne comprend pas... 😕


  • M

    Salut,

    E= (-3+2x)(5x-2) + (25x²-4) - 3(2-5x)

    Tu as raison, le facteur commun c'est bien 5x-2, on le trouve en factorisant 25x²-4:

    E= (-3+2x)(5x-2) + (5x+2)(5x-2) -3(2-5x)

    Alors je sais pas si je vais réussir a très bien t'expliquer, je vais quand meme essayer ^^

    lorsque tu développes -3(2-5x), tu obtiens -6 +15x, on est d'accord?
    Le (2-5x) te gène dans ta factorisation, tu vas donc faire en sorte "d'inverser" les signes afin d'obtenir (5x-2) à la place, sans changer le résultat final.
    Ca te donne donc 3(-2 +5x). Lorsque tu développes, le résultat est bien le même. Donc voila ce que ca te donne:

    E= (5x-2) [(3-2x)+(5x+2)+3]
    Je pense pas m'être trompée! N'hésite pas a redemander si t'as pas compris! A+! 😉


  • A

    Bonjour,

    J'ai compris jusqu'à ...3(-2 +5x).
    Mais je comprend pas pourquoi vous faites
    E= (5x-2) [(3-2x)+(5x+2)+3]

    J'aimerais bien que vous m'expliquez plus clairement, je crois que je suis un peu perdu ...


  • M

    Hum... je suis peut etre allée un peu vite.

    Quand tu as inversé les signes, tu as:

    E= (-3+2x)
    (5x-2)+ (5x+2)
    (5x-2)+ 3
    (5x-2)

    Le facteur commun est en rouge. Maintenant, il ne te reste plus qu'à mettre tout ce qui n'est pas facteur commun dans la parenthèse (il faut que tu revoies ton cours sur les factorisations). Ce qui te donne

    E=
    (5x-2)[(-3+2x) + (5x+2) + 3]
    Ensuite il ne te reste plus qu'a développer la parenthèse de droite:

    E= (5x-2) (-3 + 2x + 5x + 2 + 3)

    C'est clair?


  • A

    Oui, je pense que j'ai compris
    Merci de m'avoir expliqué 😉


  • M

    Je t'en prie! 🙂


Se connecter pour répondre