fonction - variations - théorème de la bijection
-
Ssteelskin3 dernière édition par
Je suis coincé au 2ème exercice d'un devoir maison.
J'en ai fais une partie mais je n'arrive pas à résoudre certains points.
Voila l'exercice:Code
G(X)= X+1+(X/X²-1) définie sur ]-∞ ; -1[ U ] -1 ; 1[ U ]1 ; +∞ [Soit (C) sa courbe représentative dans un repère orthonormal du plan. 3. Exprimer G' (X) et étudier le signe de G' (X) sur chacun des intervalles du domaine de définition. Donner le tableau de variation de la fonction g sur [0 ; 1[ U ] 1; +∞ [
J'ai trouver G' (X) = 1+(1/ (2X)) mais je n'arrive pas à justifier le reste.
Plus loin, j'ai cette question:
Citation
5. Calculer g(3/4) et g(4/5)On admet que: les fonctions polynômes, les fonctions rationnelles, les fonctions cosinus et sinus, la fonction racine carrée, sont continues sur leur domaine de définition.
Montrer que la restriction de la fonction g à l'intervalle [ 3/4 ; 4/5 ] est définie, continue et strictement monotone.
L'équation G (X) = 0 admet-elle une unique solution dans [ 3/4 ; 4/5 ] ? (On pourra invoquer le TH. de la bijection)
J'ai trouver G (3/4) = 1/28 et G(4/5)= - 19/45.
Mais après, je ne sais pas faire (disons que ma prof de math de 1ère S à été absente la moitié de l'année et on a pas eu de remplaçant...)Merci beaucoup de m'aider !
modif : merci de choisir des titres plus explicites
-
Zzoombinis dernière édition par
bonjour,
ta dérivée est fausse pour G(X) au niveau de ton quotient.
-
Ssteelskin3 dernière édition par
C'est vrai!
j'ai recalculer et j'ai trouver G' (X) = 1 + (x²+1)/(x²-1)²
Je me suis encore trompé?
-
Zzoombinis dernière édition par
J'en ai bien peur oui :frowning2: mais cette fois ci je crois que ce n'est qu'une erreur de signe.
-
Ssteelskin3 dernière édition par
J'en rate pas une moi!
G' (X)= 1- (x²+1)/(x²-1)²Le pire, c'est se que j'ai trouvé mais pas se que j'ai écris ici -_-'
-
Ssteelskin3 dernière édition par
J'ai tenter en vain de créer un tableau de valeurs.
J'ai prix comme 1ère fonction -(x²+1)/(x²-1)² se qui a donner comme racines -1 et 1 (utile pour respecter le domaine de définition)
Mais je ne sais pas se que je pourrais prendre comme fonction pour que la multiplication de celle-ci avec la 1ère fonction donne G'(x)!
Pouvez vous m'aider?
édit: j'ai remarquer que si l'on continue la transformation de la dérivée, on arrivait à G'(X)= -2/ (X²-1)²
Mais je suis pas plus avancer pour le tableau de signe.
Un petit coup de main?
-
Pour t'aider d'avantage , il faudrait que l'expression que tu donnes pour G(X) ne soit pas ambiguë.
En la lisant en respectant les priorités entre les opérations je trouve
G(X)= X+1+(X/X²-1) = G(X)= X + 1 + 1/X - 1
donc on aurait G'(x) = 1 - 1/X21/X^21/X2 !!!!
Ecris G(X) comme tu la rentrerais dans une calculatrice !
-
Ssteelskin3 dernière édition par
Coment dire, je comprend tes calculs mais j'aurais du écrire la fonction comme tel:
G(X)= X+1+(X/(X²-1))
Donc on peut pas réduire comme si on avait X/X² parce que c'est X/ (X²-1)
C'est une erreur de précision de ma part.
-
JJeet-chris dernière édition par
Salut.
g(x)=x+1+xx2−1g(x)=x+1+\frac{x}{x^2-1}g(x)=x+1+x2−1x
- Tu cherches donc à dériver G.
Vu que la dérivée d'une somme c'est la somme des dérivées, on peut déjà dire que G'(x) = (dérivée de X→X+1) + (dérivée de X→X/(X²-1)).
Reste à calculer les deux dérivées.
-
D'après ce que j'ai lu c'est bon pour la première.
-
Pour la seconde, on va appliquer tout bêtement la formule de la dérivée d'un quotient.
f=u/v ⇒ f'=(u'v-uv')/v²
Or ici u(X)=X et v(X)=X²-1. Calcule donc u' et v', puis applique la formule.
@+