Secteur angulaire et angles orientés


  • R

    Bonjour 😄
    Voici mon exercice :

    On considère un secteur angulaire d'angle au centre alpha et de rayon R. On désigne par l le périmètre du secteur angulaire et par A son aire.

    1) Périmètre fixé, aire maximale:

    Montrer que A=1/2(l-2R)R

    Pour quelle valeur de R, le périmètre l étant fixé, l'aire A est-elle maximale?
    En déduire la valeur de alpha correspondante.

    2)* Aire fixée, périmètre maximal:*

    Montrer que l= (2A)/R + 2R

    L'aire A étant fixé, montrer que l est minimal si alpha est égal 2 radians.

    Voilà j'ai réussi à montrer que A=1/2(l-2R)R en utilisant la proportionnalité entre la longueur de l'arc intercepté et l'aire, donc :A/(pir^2) = (l-2R)/(2pi*R) puis la suite est évidente.
    J'ai aussi réussi à démonter que l= (2A)/R + 2R en partant de A=1/2(l-2R)R.

    Par contre je ne vois vraiment pas comment je peux trouver quand l'aire de A est maximale et comment je peux montrer que l est minimal si alpha est égal 2 radians. 😕
    J'aimerai vraiment comprendre Merci beaucoup pour votre aide! 😄


Se connecter pour répondre