Etudier la fonction qui donne la hauteur d'une rectangle en fonction de sa largeur
-
Ggabi-63 dernière édition par Hind
bonjour,Voila j'ai un problème de maths assez complexe à traiter
Le voici :dans un mur de largeur 4m et de hauteur 2.5 m,on veut ouvrir une fenêtre rectangulaire d'aire 3m².On note x sa largeur et y sa hauteur.
a) déterminer la fonction f qui donne la hauteur y de la fenêtre en fonction de sa largeur x
b)quelle peut être lla argeur minimale de la fênetre ? et sa hauteur minimale ?Merci de répondre,parce-que j'ai beau me creuser la tête j'y comprend rien
-
Mmathtous dernière édition par
Bonjour,
Exprime l'aire d'un rectangle de x sur y .
-
Ggabi-63 dernière édition par
l'aire d'un rectangle c'est L.l donc f(x)=2y
c'est ca ?
-
Mmathtous dernière édition par
Non : ici, L= x et l = y.
D'où viendrait ta multiplication par 2 ? Est-ce que tu confondrais les opérations ?
-
Ggabi-63 dernière édition par
S la surface de la fenetre ,on sait que f(S)=xy donc f(x)=y÷S ?
-
Mmathtous dernière édition par
Non.
- On demande y en fonction de x et non le contraire.
- Encore une opération mal interprétée : si S= x.y , alors y = S/x et non pas x/S.
- Ici, que vaut S ?
-
Ggabi-63 dernière édition par
S vaut 3m² donc y=3/x donc f(x)=3/y enfin je crois :rolling_eyes:
-
Mmathtous dernière édition par
Oui, c'est cela : f(x) = 3/x , pas 3/y.
Que sais-tu de la fonction f(x) = 3/x pour x positif ?
-
Ggabi-63 dernière édition par
fonction carré
-
Mmathtous dernière édition par
Non : une fonction carré serait de la forme f(x) = k.x².
Ici, on a f(x) = 3/x .
C'est une fonction qui exige x≠0, et qui pour x > 0 est ?? croissante ou décroissante ?
Quelle forme a sa représentation graphique ?
-
Ggabi-63 dernière édition par
décroissante
-
Mmathtous dernière édition par
Oui.
Tu sais quel nom porte la représentation graphique ?
Pour une fonction carré, c'est une parabole ( ou une portion de parabole ).
Et ici ?
-
Ggabi-63 dernière édition par
hyperbole
-
Mmathtous dernière édition par
Oui, ici c'est juste une portion d'hyperbole car x ( et y ) ne peuvent pas prendre toutes les valeurs possibles.
Entre quoi et quoi peut varier x ? et y ?