Calculer l'image d'un point par une fonction et déduire sa valeur maximale
-
MMathwold2 dernière édition par Hind
Nous admmetrons que A(x) atteint son maximum lorsque (A(x))²=x²(25-x²) atteint son maximum.
On apelle f la fonction définie sur I par f (x)= x²(25-x²)1)a) calculer l'image de 5√2/2 par f
R:f(x)=x2(25-x2)
f(5√2/2)=(5√2/2)²[25-(5√2/2)²]=(45/4)[25-(45)/4]
f(5√2/2)=100b) Montrer que, pour tout x∈I, f(x)-f(5√2/2)=-(2x²-25)²/4
R: Quand je le fais je trouve - 2x²-25/4, je ne trouve pas -(2x²-25)²/4c) En deduire pour tout X∈I, f(x)≤ f(5√2/2)
R:d)En deduire la valeur de x pour laquelle f (et donc A) atteint son maximum puis la valeur maximale de A.
R: ?Pouvez vous corriger la question 1)a) et m'aider pour les questions b), c) et d)
Merci de bien vouloir m'aider Mathwold2..
-
Bonsoir,
- C'est f(5√2/2) et non f(2√5/2)
calcul à rectifier.
b) développe le terme de droite.
- C'est f(5√2/2) et non f(2√5/2)
-
MMathwold2 dernière édition par
- C'est rectifier
b)Je ne vois pas comment faire pour développer ???
-
MMathwold2 dernière édition par
Aidez moi silvouplait
-
-(2x²-25)²/4
Utilise (a-b)² = ....
avec a = 2x² et b = 25