Résolution d'équations différentielles sur R



  • Bonjour, j'ai un exercice de mathématique sur les exponentielles et j'aimerais qu'on m'aide pour le début !
    On considère les deux equations différentielles :
    y' = 2y (1) et y'=y (2)

    1. résoudre ces equations diffèrentielles sur R

    2. y = ke^3x et y = ke^x

    3. Le graphique ci dessous représente une partie de la courbe C d'une fonction F et d'une de ses tangentes dans un repère orthonormal (o; i; j )
      cette fonction F est définie sur R par :
      f(x) = f1(x) - f2(x)
      Ou f1 est soulution de l'équation (1) et f2 une solution de l'équation (2)

    a)a partie des données lues sur le graphique, donner f(0) puis montrer que la droite T a pour équation y = 3x+ 1
    en déduire f'()

    a)f(0) = 1 et je sais que l'équation de la tangente est f'(a)(x-a) +f(a) mais je bloque la

    b) a l'aide des valeurs de f(0) et de f'(0) trouvées a la question précédente, déterminer les fonctions f1 et f2
    en déduire que, pour tout nombre réel x f(x) = 2e^2x - e^x

    c)déterminer la limite de f en - et + l'infinie

    d) en utilisant une calculatrice, donner une approximation d el'abscisse du point d'intersection de la courbe C avec l'axe des abscisses.

    Voila merci d'avance pour vos piste que j'aimerais fortement avoir a fin de continuer mon exercice !


  • Modérateurs

    Bonsoir smashing13

    1. pourquoi le 3 en exposant ?

    2. Sans le graphique, difficile de vérifier les réponses.
      Recherche f'(0).



  • oui erreur de frappe, depuis que je l'ait posté j'en suis a la c) j'ai trouvé les autres 🙂
    j'ai juste une question toute bête, en +infini, y'a t'il un cas d'indetermination ?


  • Modérateurs

    Pour la limite factorise exe^x.



  • exe_x(2e -1) ?



  • (j'me suis trompé c'est pas un indice mais exposant ^^'


  • Modérateurs

    2e2x2e^{2x} - exe^x =
    ee^x(2ex(2e^x - 1)
    donc la limite en +∞ est ....



  • en - infini c'est 0 merci a toi 🙂


Se connecter pour répondre
 

Découvre aussi nos cours et fiches méthode par classe

Les cours pour chaque niveau

Encore plus de réponses par ici

  • 3
  • 4
  • 3
  • 1
  • 9
  • 5
  • 6
  • 6
  • 1
  • 40