Retrouver une equation de parabole
-
Lloubn0302 dernière édition par
Bonjour à tous et à toutes, j'ai exercice de maths a faire pour mardi, j'ai essayé pas mal, je pense être sur la bonne voir mais je n'arrive pas à totalement le terminer et j'aurais besoin de votre aide svp ?
Voici l'exercice:
Trouver la fonction f ayant pour courbe représentative la parabole dessinée ci dessous.
Préciser les coordonnées du sommet et les variations de f.
Mes réponses:
On sait que la forme type d'une parabole est : a(x-α\alphaα)²+β\betaβ
Par lecture graphique j'ai trouvé les coordonées de S: (3;4)
Je remplace donc α\alphaα et β\betaβ par 3 et 4 ce qui me donne
f(x)=a(x-3)²+4Etant donné que la courbe est a l'envers je sais que a est négatif.
Et je suis bloqué la parce que je ne sais pas comment trouver a.
Merci d'avance pour votre aide.
-
SShloub dernière édition par
Salut,
Que sais-tu de f(1) et f(5) ?
-
Lloubn0302 dernière édition par
Bonjour merci mais je ne vois vraiment pas comment m'en servir pour trouver a /:
-
SShloub dernière édition par
En remplaçant x par 1 ou 5 dans f(x)=a(x-3)²+4 ?
-
Lloubn0302 dernière édition par
f(1)=a(1-3)²+4= a*(-2)²+4=a4+4=a8
Mais après je ne sais pas quoi faire
-
SShloub dernière édition par
«a4+4=a8»
Je crois que c'est faux, attention à la priorité des opérateurs.
D'après la figure, que vaut f(1) ?
-
Lloubn0302 dernière édition par
Ah oui mince c'est égal à 4a +4
et d'après la figure f(1)=0 non ?
-
Lloubn0302 dernière édition par
??
-
Bonsoir loubn0302,
Oui f(1) = 0
tu résous 4a + 4 = 0
a = ...
puis tu écris f(x) = ...
-
Lloubn0302 dernière édition par
Bonsoir merci beaucoup de votre aide donc a=-1 et f(x)=-(x-3)²+4
Par contre dans l’énoncé on me demande de préciser les variations de f mais je ne comprends pas trop ce que ça veut dire /:
-
Précise le domaine pour lequel la fonction est croissante et décroissante.
-
Lloubn0302 dernière édition par
Ok merci beaucoup