Justifier soigneusement qu'une variable aléatoire suit une loi binomiale



  • Bonjour,

    un article d'une revue medicale affirme que, depuis environ 30ans, le nombre de personnes confrontées aux allergies ne cesse d'augmenter.
    Actuellement, enviorn 40% de la population a deja déclaré une pathologie allergique.
    On étudie la fréquence f des personnes ayant déclaré une pathologie allergique dans un échantillon de 400 personnes. On compte 175 personnes allergiques.
    On suppose que la proportion p de la population ayant deja déclaré une pathologie allergique est 40%.
    Soit X la variable aléeatoire égale au nombre de personnes ayant déclaré cette pathologie, dans l'échantillon.

    1.Justifier soigneusement que X suit une loi binomiale dont on précisera les paramétres.

    1. Déterliner l'intervalle de fluctuation a 95% de la frequence correspondant a X.
      3.a. Calculer f
      b. Enoncer la regle de decision permettant de rejeter ou non l'hypothése p=0.4, selon la valeur de la frequence f.
      c. conclure

    jai esayer mais je ne trouve pas merci davance



  • Bonsoir, quelques pistes,

    1)D'après l'énoncé , X suit la loi Binomiale B[400, 0.4]

    1. D'après ton cours :

    $\text{i=[p-\frac{1}{\sqrt n} , p+\frac{1}{\sqrt n}]$

    Tu remplaces p par 0.4 , n par 400 et tu comptes.

    3)f=175400f =\frac{175}{400}

    Tu vérifies si f appartient ou non à l'intervalle I


 

Découvre aussi nos cours et fiches méthode par classe

Les cours pour chaque niveau

Encore plus de réponses par ici

Il semble que votre connexion ait été perdue, veuillez patienter pendant que nous vous re-connectons.