Module des complexes
-
TTruge dernière édition par
Bonsoir, alors voilà j'ai un exercice de mathématique a faire que voici:
On se place dans le plan complexe muni du repère orthonormal (O;U;V)
Soient A , B , C d'affixe za=3+5i ,zb=7+i , zc=3-3i
1)Placer les points sur une figure que l'on complétera au fur et à mesure
2)a)Quelle est la nature du triangle ABC ? Justifier
b)Démontrer que les points A et B sont sur un même cercle de centre I d'affixe Zi=1-i
3)A tout point M d'affixe z du plan on associe le point M' d'affixe z' par l'application tel que z'=2iz+1-i
a)Déterminer les affixes des points A' , B' et C' images respectives de A ,B et C par f
b)Quelle est la nature du triangle A'B'C' ?4)Déterminer le point invariant K par c'est-à-dire le point K dont l'affixe vérifie z'k=zk
a)Démontrer que z'-zk=2i(z-zk)
b)Soit M un point du plan et M' son image par ,déterminer une relation entre M'K et MK
c)M appartient à un cercle de centre K et de rayon 3 ,montrer que M' appartient à un cercle dont on déterminera le centre et le rayonJ'ai répondu a toutes les questions sauf, la question 4)b) et 4)c) J'aurais besoin de votre aide pour ces deux questions. Merci d'avance pour vos réponses.
-
TTruge dernière édition par
Personne ?
-
Bonsoir Truge,
Ecris les affixes de M'K et MK,
-
TTruge dernière édition par
Bonsoir, l'affixe de M'K est : -2+6i/5 -2iZm
Et l'affixe de MK est : 3+i/5 -Zm Ensuite je dois faire quoi ?Merci pour votre réponse
-
Ecrire la relation entre les deux expressions.
tu peux utiliser le résultat de la question a).
-
TTruge dernière édition par
Je ne vois pas qu'elle relation il peut y avoir en fait..
-
TTruge dernière édition par
M'K=2i*MK Non ?
-
Oui mais avec les affixes.
-
TTruge dernière édition par
C'est a dire ?
-
De
z' - zk = 2i(z - zk)
tu déduis les distances
M'K =