Limites des termes d'une suite somme
-
Bblopishere dernière édition par Hind
Bonjour!
Nous avons abordé les suites en cours, un sujet qui ne m'est vraiment pas aisé...Notre devoir porte sur les limites des suites réelles :
Pour tout n app/ N*, on pose :
unu_nun = (n/(n^2 +1))+(n/(n^2 +2))+...+(n/(n^2 +n))J'ai réussi la première question (•de combien de termes unu_nun est-il la somme? n termes puisque la suite commence par 1
•Quelle est la limite de chacun de ces termes quand n tend vers +inf/ ? Peut-on en déduire la limite de unu_nun quand n tend vers +inf/ ? toutes les limites sont égales à 0, on peut trouver la limite de unu_nun par théorème d'opération, et c'est donc aussi égal à 0...)J'espère que pour l'instant je ne suis pas dans l'erreur!
La deuxième question me pose problème :
Quel est le plus petit de ces termes? Quel est le plus grand?
(Je ne vois pas trop comment faire, vu que n peut être aussi grand que l'on veut, ou peut valloir 1... Y a-t-il plusieurs cas?)
En déduire que pour n>= 1,
(n^2 /((n^2 +n)) <= unu_nun <= (n^2 /(n^2 +1))Mais comment peut on faire?
Pourriez vous me donner une piste?
Merci beaucoup!
-
Bonjour,
On ne peut pas conclure qu'une infinie de fois un nombre qui tend vers 0 est 0 car on tombe sur une forme indéterminée
0 x inf/
en effet pour comprendre on peut prender des exemples
un nombre proche de zéro peut être par exemple 10−10010^{-100}10−100 ou 10−100010^{-1000}10−1000
un nombre très grand (vers +inf/ ) peut être 1015010^{150}10150 ou 1050010^{500}10500
donc on aurait 10−10010^{-100}10−100 x 1015010^{150}10150 = 105010^{50}1050 soit un grand nombre (vers +inf/ )
ou 10−100010^{-1000}10−1000 x 1050010^{500}10500 = 10−50010^{-500}10−500 soit un très petit nombre (proche de zéro)
Ce qui peut se traduire par : quand on multiplie un grand nombre (vers inf/) par un petit (prôche de 0) on ne sait pas lequel gagne
-
Bblopishere dernière édition par
Ah, merci de me montrer mon erreur! C'est vrai qu'en réfléchissant, j'aurais pu m'en rendre compte, vu que la dernière question est justement de trouver la convergence de la suite!
Mais pour la question 2?! Je suis toujours dans le flou total!
-
Bblopishere dernière édition par
Ah, merci de me montrer mon erreur! C'est vrai qu'en réfléchissant, j'aurais pu m'en rendre compte, vu que la dernière question est justement de trouver la convergence de la suite!
Mais pour la question 2?! Je suis toujours dans le flou total!
-
bein
pour ce qui suit, si tu n'as aucune idée (ce qui est normal puisque tu débutes dans l'étude des suites)tu regardes ce qui se passe pour n = 1 puis n= 2 puis etc ....
tu continues jusquà ce que tu comprennes ce qu'on te demande ; alors après tu essayes de démontrer ce qu'on veut que tu démontres.
A toi