Suites réelles



  • Bonjour!

    J'ai un devoir à faire sur le triangle de Sierpinski, dont voici l'enoncé :

    On dispose au départ d'un triangle équilatéral de côté 3cm dont l'intérieur est noir. A la première étape, on construit le triangle des milieux que l'on colorie en blanc. A la deuxième étape, on répète l'opération pour chacun des trois triangles noirs de l'étape 1. Et ainsi de suite indéfiniment.

    On s'interesse aux triangles blancs TnT_n construits lors de la n-ième étape. Pour n >= 1, on désigne par p n_n le périmètre et par ana_n l'aire d'un triangle TnT_n

    1. calculer u1u_1 (=1), p1p_1 (=9/2) , et a1a_1 (=9 sqrtsqrt3)/16)
      2 Indiquer comment u2u_2 , p2p_2 , et a2a_2 s'obtiennent simplement à partir de u1u_1 , p1p_1 et a1a_1
      u2u_2 =u1=u_1 +3
      p2p_2 =(1/2)p1=(1/2)*p_1
      a2a_2 =(1/8)a1=(1/8)*a_1 (là, je ne suis pas sûre, est-ce (1/8) ou (1/4)?)

    Cela reste vrai à l'étape n=1 pour p et a, mais pas pour u, et il faut ensuite déduire la nature des suites (les 2 dernières sont donc géométriques, c'est juste?), mais coment faire pour la suite u?

    Il me semble que u(n+1)=3u(n)+1, mais je ne vois pas trop comment le prouver, j'ai trouvé cette suite en faisant les calculs successifs des triangles...

    Merci beaucoup!



  • Bonjour,

    Je dois avouer ma flemme de me pencher sur ce problème donc j'ai cherché avec un bon moteur de recherche ce qui existait déjà avant de me fatiguer les méninges.

    J'ai trouvé

    http://www.ac-reunion.fr/pedagogie/lyhingop/PEDA/GENE/maths/curios/poly/sierpinski.htm

    http://www.mon-ile.net/chaos/fractales.php

    http://www.maths.ac-aix-marseille.fr/debart/pdf_dp/fracegypt.pdf

    Et il y en a plein d'autres. Regarde, si tu trouves ton bonheur.



  • Merci beaucoup!!

    Ce n'était pas la peine de faire tout ça, j'ai finalement trouvé toute seule...
    J'ai appellé à l'aide trop tôt! Je suis vraiment désolée!

    Et merci aussi de toute l'aide que vous m'avez fourni depuis que je suis inscrite, c'est vraiment super sympa!


Se connecter pour répondre
 

Il semble que votre connexion ait été perdue, veuillez patienter pendant que nous vous re-connectons.