Trouver x dans le triangle
-
Bonjour,
J’ai oublié du matériel donc mon professeur m’a donné cet exercice (je suis en 5eme) et je n’y arrive pas. Il faut trouver x.
Merci de votre aideVoici l’image de l’exercice :https://cdn.discordapp.com/attachments/836527490855600178/982999092802224160/095423AC-C8F2-4A5F-9F29-EBA64DEF4B15.jpg
-
@antoine-o Bonjour,
Détermine dans le triangle ABC, la somme des angles B et C.
Puis analyse .
-
@antoine-o , bonjour,
Je ne sais pas trop si mon explication va te convenir, vu que tu es en 5ème.
Il faudra adapter si besoin.Il faut utiliser la propriété : la somme des angles d'un triangle vaut 180°, que tu appliqueras au triangle BCD et au triangle ABC.
Soit b la mesure en degrés de l'angle CBD^\widehat{CBD}CBD
Soit c la mesure en degrés de l'angle BCD^\widehat{BCD}BCDDans le triangle BCD, tu peux écrire b+c+x=180b+c+x=180b+c+x=180 c'est à dire x=180−(b+c)\boxed{x=180-(b+c)}x=180−(b+c)
Dans le triangle ABC, tu peux écrire (2b+2c)+82=180(2b+2c)+82=180(2b+2c)+82=180
En divisant par 2, tu obtiens :(b+c)+41=90(b+c)+41=90(b+c)+41=90 c'est à dire
b+c=80−41=49b+c=80-41=49b+c=80−41=49En remplaçant b+cb+cb+c par 494949 dans la formule encadrée, tu obtiendras la valeur de xxx.
Exprime cela à ta façon si celle là ne te convient pas...
Bon travail.
-
Bonjour Noemi.
Je n'avais pas vu que tu étais là !
-
@mtschoon merci beaucoup pour ton aide
-
De rien @antoine-o
J'espère que tu as rédigé comme tu as l'habitude, et que tu as trouvé x=131x=131x=131°
-
Vous pouvez apprendre des concepts déroutants de Solvemate. Il s'agit d'un service d'enseignement des mathématiques qui utilise la technologie d'apprentissage adaptative pour générer des problèmes de mathématiques en fonction des besoins scolaires de chaque élève.
math mate in your pocket. https://intro.solve-mate.com/
-
SSergio Hassan dernière édition par
Bonjour. Il faut partir depuis le fait que la somme totale des angles de chaque triangle soit 180°. Puis, on fait la soustraction avec les données existants. Dans un sujet difficile comme cela, apprendre efficacement est indispensable.