dérivée de ln de x avec exp
-
Ddricce2906 dernière édition par
Bonjour, j’ai un dm à rendre et dans un des exercices il faut dérivé une fonction ln mais je n’y arrive pas !! Quelqu’un pourrait-il m’aider ? Merci !
QCM : Choisir la ou les bonnes réponses et justifier
f(x)=ln(e-x)a) f’(x)= −1/e−x-1 /e-x−1/e−x b) f’(x)= 1/e−1/x1/e - 1/x1/e−1/x c) f’(x)=1/x−e1/x-e1/x−e
Je sais que la dérivée composée de
ln(u(x))= u’(x)/u(x) mais pourtant je ne trouve aucun des résultats proposés.J’obtiens : e−1/e−xe-1/e-xe−1/e−x
Quelqu’un peut il m’éclairer ?
Je m’excuse d’avance je ne sais pas comment on écrit
-
@dricce2906 Bonsoir,
Si f(x)=ln(e−x)f(x)= ln(e-x)f(x)=ln(e−x)
avec u(x)=e−xu(x)= e-xu(x)=e−x, u′(x)=−1u'(x)= -1u′(x)=−1
soit f′(x)=−1e−x=1....f'(x) = \dfrac{-1}{e-x}= \dfrac{1}{....}f′(x)=e−x−1=....1Je te laisse terminer le calcul et conclure.
-
Ddricce2906 dernière édition par
Merci beaucoup pour ta réponse !
Mais je pensais que la dérivé de l’exponentielle était elle même ??? Pourrais-tu m’expliquer s’il te plait ?? Merci !
-
Si la fonction est bien : f(x)=ln(e−x)f(x)=ln(e-x)f(x)=ln(e−x)
ici ce n'est pas la fonction exe^xex mais seulement e1e^1e1 donc un nombre et la dérivée de e1e^1e1 est égale à 0.
-
Ddricce2906 dernière édition par
@Noemi
Merci beaucoup ! J’en conclue que la réponse c’est : -1/e-x ? il n’y a qu’une seule solution.
-
Tu as aussi la dernière solution.