Egalité à démontrer (géométrie dans l'espace)
-
BBbygirl dernière édition par
Salut à tous, je dois démontrer une égalité mais je bloque au milieu du calcul et je ne m'en sors pas.
Merci d'avance à tous ceux qui pourront m'aider.
voici l'énoncé.A et B deux points du plan P tels que AB = 4. I le milieu de [AB].
Montrer que Pour tout M appartenant à P, MA2MA^2MA2 + MB2MB^2MB2 = 2 MI2MI^2MI2 + (AB2(AB^2(AB2)/2.
Voilà alors MA2MA^2MA2 + MB2MB^2MB2 = (MI+IA)2(MI+IA)^2(MI+IA)2 + (MI+IB)2(MI+IB)^2(MI+IB)2 = 2MI2MI2MI^2+IA+IA+IA^2+IB2+IB^2+IB2+2MI.IB + 2MI.IA
Ce qui me pose problème c'est de trouver le terme (AB2(AB^2(AB2)/2 avec IAIAIA^2+IB2+IB^2+IB2+2MI.IB + 2MI.IA
Voilà merci d'avance de vous intéresser à mon problème et tout ce qui est entre parenthèses représente des vecteurs je ne me suis pas encore habituée au LaTex mais je ferai un effort la prochaine fois.
-
Mmiumiu dernière édition par
coucou
je suis en trein de réfléchir a une autre possibilité on ne pourrait pas utiliser le fait que
MA + MB =2 MI ?! je regarde c'est peut être une piste c'est pas pour demain j'espère lol
-
BBbygirl dernière édition par
En fait J'ai trouvé que MAMAMA^2+MB2+MB^2+MB2 = 2MI2MI2MI^2+IA+IA+IA^2+IB2+IB^2+IB2
Mais ensuite je sais pas comment faire pour expliquer que IAIAIA^2+IB2+IB^2+IB2 = (AB2(AB^2(AB2)/2
Parce que vu que I est le milieu de AB alors IA=IB mais ensuite ...
-
Mmiumiu dernière édition par
re
MA²+MB² = 2MI²+IA²+IB² ok je te crois
et bien je ne sais pas IA=IB=1/2 AB donc IA²=IB²=1/4 AB²
nan?! je sens la fatigue mdr
mais c'est faux si ce sont des vecteurs ce sont des vecteurs ou pas
-
BBbygirl dernière édition par
oui merci c'est exactement ce que je viens de retrouver dans mon cours de l'année dernière. merci beaucoup de ton aide en tout cas
-
Mmiumiu dernière édition par
a ok bon cool alors si c'est ce que t'as trouvé
bon ba je vais dormir maintenant j'en ai besoin lol
+++
-
BBbygirl dernière édition par
+++ bonne nuit lol et encore merci