Relation D'Euler



  • bonjour,
    Je souhaiterai un petit coup de main sur un exercice dont voici l'ennoncé et dont j'ai fait une partie:

    ABC est un triangle quelconque de centre de gravité G. O est le centre du cercle circonscrit au triangle ABC, A' milieu de BC, B' milieu de AC, C' milieu de AB Et le point K défini par la relation
    OK= OA+OB+OC (désolée je ne sais pas faire le signe "vecteur")

    1. Faire une figure sans placer le point K : FAIT

    2)Montrer que les vecteurs AK et OA' sont colinéaires. En déduire que (AK) et (BC) sont perpendiculaires. FAIT
    AK= 2OA' donc colinéaires
    Si AK et OA' sont colinéaires alors ils sont paralleles
    Comme (OA') perpendiculaire à (BC) (puique (OA') est une hauteur ) alors (AK) est perpendiculaire à (BC)

    3)Qui est alors le point K?

    La je sais que K est l'orthocentre à cause du rapport avec la relation d'Euler mais je ne sais pas le démontrer

    4° prouver que O est le barycentre du système de points pondérés {(K,-2);(A,1);(B,1);(C,1)}

    La j'ai un problème car
    G etant le barycentre du triangle ABC il me reste à prouver que O est le barycentre de {(G,3);(K,-2)}

    OA+OB+OC=OG+GA+OG+GB+OG+GC
    =3OG Comme G est le centre de gravité GA+GB+GC=0
    D'après l'énnoncé OK=OA+OB+OC donc
    OK=3OG donc 3OG-OK=0
    Et la rien ne va plus puisque je trouve O barycentre du système {(G,3);(K,-1)} et pas (K,-2) 😕

    1. En déduire que les points O,G et K sont alignés et préciser la position relative des trois points ?

    Comme OK+3OG les deux vecteurs sont colinéaires donc les trois points O,K et G sont alignés et OG=1/3OK


  • Modérateurs

    Salut jeanounette,
    pour la 3 tu viens de montrer en 2 que (AK) était la hauteur issu de A du triangle, ne pourrais-tu pas démontrer d'une façon similaire que (BK) est la hauteur issue de B de ce même triangle, ce qui te permettrait de conclure.
    Pour la 4 je pense qu'il s'agit d'une erreur d'énoncé, ton raisonnement tient parfaitement la route, le reste est bon aussi.



  • merci je vais essayer...
    Bonne et heureuse année à vous aussi



  • Effectivement puisque (AK) est parallele à OA', elle est donc perpendiculaire à (BC) et est donc la hautaur issue de A du triangle .
    Je peux effectivement faire la même chose avec (BK) et démontrer de la même manière que BK=2OB' et que (BK) est la hauteur issue de B
    Idem avec CK

    Mais qu'est ce qui me prouve que K est le point de concours des trois hauteurs et donc l'orthocentre.( à part le voir sur la figure !)


  • Modérateurs

    Bah parce que K appartient à (AK), à (BK) et à (CK) qui sont les trois hauteurs du triangles !


Se connecter pour répondre
 

Il semble que votre connexion ait été perdue, veuillez patienter pendant que nous vous re-connectons.