Tétraèdre
-
Aalkaide dernière édition par
hey, je suis bolquée dans un exo de geométrie avec les plans...
énoncé: ABCD est un tétraède; E, F G et H sont quatre points situés respectivement sur les arêtes [AC], [AD], [BC] et [BD] tels que
AE=1/4 AC
AF=1/4 AD
CG=1/4 CB
DH= 1/3 DBJ'ai prouvé que (EF) et (GH) sont parallèles et que (Ge) et (Fh) sont sécantes, voila la question sur laquelle je bloque :
On appelle I le point d'intersection de ces deux droites. Montrer que le point I appartient a la droite (AB).
Si quelqu'un pouvait m'aider sa serait cool
-
Salut,
Tu voulais écrire DH→^\rightarrow→=1/4.AB→^\rightarrow→ ?
Pour ta question, voici le cheminement que tu peux avoir :
- Justifier que (GE) est incluse dans (ABC)
- Justifier que (FH) est incluse dans (ABD)
- Quelle est l'intersection de (ABC) et (ABD) ?
- En déduire que I appartient à (AB)
C'est une méthode "standard" pour prouver que 3 points de l'espace sont alignés ...
Tu comprends ?