a quoi ser la forme canonique?



  • salut
    ma question est un pe béte je c mais à quoi pe bien servir de calculer la forme canonique d'une equation du secon degré sachan que à partir du discriminan on a tout les outil en main pour la resoudre sen probléme .
    merci d'avence


  • Modérateurs

    Salut.

    Déjà, c'est grâce à la forme canonique que l'on a définit le discriminant.

    Ensuite, passer sous la forme canonique est souvent plus judicieux que de calculer le discriminant pour calculer les racines du trinôme, ou pour conclure qu'il n'en possède pas.

    Enfin, la forme canonique permet d'obtenir le minimum ou le maximum de la fonction.

    Par exemple:

    • f(x)=x²+2x+2=(x+1)²+1

    Il est clair que (x+1)² est positif. Donc quand x+1 s'annule(en -1), f(-1)=1 est le minimum de f. f n'admet donc pas de racine.

    • f(x)=x²+2x-1=(x+1)²-2

    Cette fois-ci, lorsque x+1 s'annule, on atteint le minimum de f: f(-1)=-2. Donc f admet 2 racines. Pour les calculer:

    On remarque que f(x) est de la forme a²-b².

    Donc f(x)=(x+1)²-2=(x+1+√(2))(x-(1+√(2)) .

    f(x) est sous forme factorisé! Ce qui permet de "lire" les racines dans l'expression de f:

    Un produit est nul si au moins un des 2 facteurs est nul. D'où f(x)=0 si x=1±√(2) .

    Avec de la pratique, c'est plus rapide dans bien des cas de passer sous la forme canonique qui donne beaucoup d'informations sur le trinôme.

    A noter que pour passser sous la forme canonique, j'ai utilisé les identités remarquables usuelles (a+b)² et (a-b)².

    Par exemple:
    f(x)=x²+x+1
    f(x)=x²+x+(1/2)²+(3/4)
    f(x)=(x+(1/2))²+(3/4)

    @+


Se connecter pour répondre
 

Découvre aussi nos cours et fiches méthode par classe

Les cours pour chaque niveau

Progresse en maths avec Schoolmouv

Apprends, révise et progresse avec Schoolmouv

Encore plus de réponses par ici

Il semble que votre connexion ait été perdue, veuillez patienter pendant que nous vous re-connectons.