Suite arithmétique



  • Bonjour tout le monde!!!
    Voila mon oetit problème:
    Determiner les trois termes consécutifs x,y et z d'une suite arithmétique de raison r vérifiant les relations indiquées:

    x+y+z=12 x²+y²+z²=120

    donc je pensais poser un système pour les determiner

    x=12-y-z
    y=12-x-z
    z=12-x-y

    donc 12=12-y-z-12-x-z-12-x-y
    12=-12-2y-2z-2x
    24=-2(12-x-z)-2z-2x
    12=-12+x+z-z-x
    et la pb j'arrive a 12=-12

    donc j'en reste bloqué la et je n'arrive pas a determiné les deux termes.

    Alors si jamais vous avez une idée, une piste je suis toute ouie.
    bonne soirée!!!
    adher01



  • Bonjour,

    Il faut que tu partes de la définition de x, y et z sont les trois termes consécutifs d'une suite arithmétique de raison r

    cela veut dire que :
    y = x + r et
    z = y + r = x + 2r donc en remplaçant y et z par ces valeurs dans

    x + y + z = 12
    x² + y² + z² = 120

    tu devrais tomber sur 2 équations à 2 inconnues x et r ce qui devrait être suffisant pour trouver x et r donc en déduire y et z



  • Merci beaucoup .
    donc je doit arriver à :
    x+y+z= x+ (x+r) + (x+2r) =12
    x+y+z=3x+3r=12
    x+r=4

    et pour l'équation au carré :
    x²+y²+z²=x²+(x+r)²+(x+2r)² =120
    x²+x²+2xr+r²+x²+4xr+4r² =120
    3x²+6xr+5r²=120
    3(4-r)+6(4-r)r+5r²=120
    12-3r+24o-6r²+5r²=120
    12+21o-r²=120
    108-21r+r²=0
    on a affaire un un polynôme du second degrés l'on peut donc utiliser le delta:

    Δ=b²-4ac
    Δ=441-4(108×1)
    Δ=441-432
    Δ=3²

    donc r1r_1= \frac{-21-3}{2}=-12
    r2r_2= \frac{-21+3}{2}=-9

    SrS_r={-12;9}
    Donc la problème j'ai daux valeurs pour r.

    on remplace r dans x+r=4
    x=4r1x=4-r_1
    x=4+12
    x= 16

    x=4r2x=4-r_2
    x=4+9
    x=13
    Et de nouveau j'ai de valeurs. Est ce normal ???
    merci d'avance adher01


  • Modérateurs

    Salut adher01,

    Je n'ai pas vérifié tes calculs (faute de balises LaTeX) mais le principe est bon. Il est tout à fait possible que tu aies 2 solutions.
    La vie ne vaut d'être vécue que si elle est vécue comme un rêve je te l'accorde mais j'émets le voeu un peu fou qu'un jour tu encadres tes formules LaTeX de balises [ tex] afin que l'on puisse les visualiser correctement !
    Appuie une fois sur la touche "LaTeX" ci-dessous pour voir comment ça fait. Et appuie aussi sur la touche modifier/supprimer de ton précédent message.
    T'as vu ? Incroyable non ?


Se connecter pour répondre
 

Il semble que votre connexion ait été perdue, veuillez patienter pendant que nous vous re-connectons.